INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE
ETHIOPIA STRATEGY SUPPORT PROGRAM (ESSP 11)

APRIL 2009

ADDIS ABABA, ETHIOPIA

STATA TRAINING NOTES (USING STATA 10.0)

30, March 2009 - 3, April 2009

ETHIOPIA STRATEGY SUPPORT PROGRAM (ESSP)

EDRI/IFPRI

Table of contents

T el oo [T e o HHU OO OO OO TSRS 1
ObjJectiVe Of the traiNING....cccci i e e st s e e b et st et e s st st see e esbesbenensereas 1
Organization Of the NOTE... .o ettt e e e e see st s testesaeeassrbessaesaesbenseanne s nees 1
DAY ONE...... ittt ettt e st et et te et e st see et e et Ee et £ eR e e eaeeea Rt Rt et eeR e SR eaneennteebe et een e sreeneentenreenres 2
® SESSION INTFOTUCTION....eiueriietitcte sttt sttt st et st st e b st st st ese st sesbesane st senssens 2

o Create household demographic data fil€.........ueceeciiie v e 3

o Identify food and non-food coMmMOdIties........cccuviririiciiie s 4

0 Check for accuracy of expenditure CategOories........ccovueierirrireerecie e e 4

O Correct the Misplaced rECOIAS.......oviiieieieiirre et steste e sn e e eerees 5

o Create food commodity data fil@........ccueieeeceee e et st enes 7

o Create non-food commodity data file.......ccoi i e st 8
DAY TWO... .ottt ettt ettt st et e sbe et e st e s st saeteuaes sheeaeeessesabeaatbeuses sheenbeen st ebeeasbennee she et eenseeehe et sennen saes 9
® SESSION INTFOAUCTION ..eiiieet ettt e s st e e sttt e e sbe st st se e e bebeebee s 9

e Generate unique household identifiers for food expenditure items.........cccceevecereeeececcererienenen. 9

o Data cleaning for food eXPenditUre........v ittt st sae s nanns 10
DAY TRIEE... ..ottt et ettt e s te st ste st e e e s e bt e s et eaeeaeabe et st st e s es et et et et ene et et st e ennenberares 13
® SESSION INTFOAUCTION ..ottt s st e bt ebe b see s e e bbbt e ens 13

e Generate unique household identifiers for non-food expenditure items.........cccceceeeverrnrenene. 13

e Data cleaning for NoN-food eXpenditure.........ccccceieiirineice et st 14
DAY FOUR ...ttt sttt sttt sae st e s seesaeeea b et sueees e sbeeateeabessbesuetesses sbeentaensessbesnseennes saeenne 16
® SESSION INTFOAUCTION . ..cuiiice ettt e st et e e et et eare b st st se e ansensenees 16

® Creating fOOU CAtEBOIIES. ...ttt ettt ettt st st e se e e b et et e s sae et st st e e s senteranes 16

o GeNErating WeIBNEEA PriCES.....ciiviirietirtee sttt b sttt e s et sas s sssese s 16

e Generate unique household identifiers for household demographic items.......cccccevverereenen. 18
DAY FIVE... .ottt st s et ettt ettt e e e e e b she she et e bt be s e a et e st sh sheeutene et e eetestenben e aaenn 19
® SESSION INTFOAUCTION ..ottt e st e bt ebe b see se s e e bbb se e ene 19

e Merge food, non-food and household demographic data files.........cceeveveivececececcceireee 19

o Compute total EXPENAITUIE....c.cceiece et ettt st st s s s s bbb e eaeene 19

o Compute share of food eXPENAITUIE........ccoceveie ettt st s er et r s e e e as 19

o Generate transformed data fileS.....u i e st 20

o Runsimple demand and ENgle's fUNCLIONS.......cccciveiicieeinint et s s 21

STATA TRAINING NOTES
ETHIOPIA STRATEGY SUPPORT PROGRAM (ESSP)

EDRI/IFPRI

NOTE
To all users of the STATA training materials on this CD Rom

The global macro created here is for convenience so that one doesn’t have to write (type) the path of
directories, which may at times be too long and susceptible to errors in typing.

In order to use the do files in the do files directory (folder), one needs to follow the same data
management structure, i.e, he/she needs to have the directories named exactly the same as those given
in the global macro and also be located in the same location as the global macro.

For example, for using the “data management” do file, one needs to create a directory named
“EthiopianData” located in the directory D. Inside this new folder another folder another folder named
“CSA Survey data” need to be created. Do the same for all directories in the global macro. The final
directory should be “do”. Alternatively, one can create its own global macro (directory path) and locate
it in any location desired. In this case however, one must change the directory path used in the do files
as well.

Introduction

This note is a compilation of training materials prepared for a STATA training organized by Ethiopian
Strategy Support Program (IFPRI) and delivered by Mr. Nigussie Tefera between 30, March and 3, April
20009.

Objective of the training

The training is organized to familiarize research officers (comment) working with Ethiopia Strategy
Support Program (ESSP) and Ethiopian Development Research Institute (EDRI) with STATA.

Organization of the note

The module is organized into five separate sessions of one day long each. On day one, household
demographic, food commodity and non-food commodity data files were created. Some basic data
cleaning was also carried out. On day two, unique household identifiers are generated and data cleaning
was done for food commodities. On day three, unique household identifiers are generated and data
cleaning was done for non-food commaodities. On day four, unique household identifiers are generated
(and data cleaning was done) for household demographics. And finally, on day five of the training
household demographic, food and non-food data files were merged and data transformations required
for estimation of simple demand functions (such as computing food shares, per capital expenditure etc.)
were done.

DAY ONE
Description

Day one’s session aims at familiarizing participants with the basics of data management. In order to
reduce the big (full) HICES file into manageable ones, the file is split into three separate files: household
demographics, food commodity and non-food commodity data files. Household demographics data file
includes key household identifier variables (key variables) such as region, rural/urban, zone, wereda etc.

The food commodity data file includes all household food expenditure items (fexp) with their
corresponding key variables, while non-food commodity category includes household non-food
expenditure items (nfexpe) along with their key variables. Inclusion of the key variables makes merging
of these separate files easy at later stage.

Data management.do

*In splitting the large data file (cons2004_ict.dta) into three separate files (household demographics,
food commodity and non-food commodity), we set about, in a way, to shift rows into columns. In the
main data file, each row represents consumption item for a particular household, followed by a set of
rows for another household. Our goal is to transform the structure of the data so that each row
represents a particular household and columns represent consumption items as shown below.

*"'D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\do"
clear

set mem 500m

set more off

set type double

capture log close

gl dat "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05"
gl prg "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\log"

*/

Note: gl= global macro

We don®"t not necessary need to define gl to specify our file path. One can
use the normal path to open his/her files. It is also possible to customaize
his/her gl based on the file path on his/her computer.

Alternatively, we also also use change directory

CD:\... command to open our fTile.
/*

log using "$prg\data.log”, replace
/*

File details
File name "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-
05\do

Created by: Nigussie Tefera
Date first version: 27 March 2009
Date this version: 10 April 2009

Purpose of file: Create hh demographic, food and non-food data using
"'cons2004 ict.dta"

*

*/

** Step 1: Get the data

use ""$dat\STATA\cons2004_ict.dta", clear

des

* Generate household level data

(] Data Editor S e ——
| Prezere ” Restare] [Sart ” <4 |[¥ ” Hide: | I Delete... |
ur(3] = B
rep | ur | clqz | clg3 | clagd | clqs | clgs | clq? | clg8 | clg9

1|snnpr ru | rural [s.n.n.p. | 4 | o8| 8| 838 | 81 | 5 | 0
i . sAnpr ru | rural :s.n.n.p. 4 1 . 5 85 81 . 5 o .
3.5nnpr" ru s.n.n.p. 4” 1. E. EE. 81. 5 0.
4 . sAnpr ru rural | s.n.n.p. .4 I .1 . .E : .8?-3 : Ei . 5 .0 .
5 .snnpr‘ ru | rural .s.n.n.p. 4 | 1 . 5 38 81 . 5 o .
[. s-nnpr: ru . r:u.r'a-1 5r1r1r.} 4 . 1 [8 . 88. 51 1 5 D“
?'“ sAnpr ru ' r‘ur':fﬂl "s-.n.n.p. ' .4 ' 1 S ' 88 81 5 4] [
5 ' sSANpr ru ' rural "s.n.n..r:l. ' 4 ' 1 [5 ' B3 ' 81“ 5 4] [
9 [snnpr ru | rural |[s.n.n.p. 4| o 8| 88 | 81 | 5 0
10 ' sAnpr ru rural 's.n.n.p. 4 1 ' 5 85 81 ' 5 o '
11 . sanpr ru) rural | s.n.n.p. 4 I 1 . 5 . 85 . 81 . 5] .
12 . sanpr ru j r'ur'éJ .s.n.n.p. .4 [.1 . .E | .SS : Ei . 5 .D .

* As can be noted above, before the collapse command below, a single household (c1q9) appears in
the data file a number of times since each row in the data file represent commodities.

collapse (max)clqlO (First)weight (min) clqll,by(clg2-c1q9 rep ur)
rename clgl0 hhsize

rename clqll hholdings

label var hhsizeHousehold size"
label var weight"Weight"
label var hholdings'Types of holdings(agricultural and non-agricultural)
order clg2-clq9 rep ur hhsize hholdings weight
save ""$dat\STATA_RV\hhdemographic.dta', replace

use "'$dat\STATA\cons2004_ict.dta", clear

(=] Data Editor | I R . B = |
Preserve || Restore Sort < Hide Delete..
varl7[1] = |
rep ur | clg2 clgs | cigs clgs clge clq? | «cigs | cig9
1| other ti | urban | tigray | 1| 2| 4 | 1| z | a0 | 1|
2 | other ti | urban | tigray | 1| 2| 4 | 1 2| a0 | 2|
3 | other ti | urban | tigray | 1| 2| 4 1 2| a0 | 3|
4 | other ti | wurban | tigray | 1.2 2| 4 | 1| 2| a0 | 4 |
5 | other ti | urban | tigray | 1| 2| 4 | 1| 2| a0 | 5 |
& | other ti | urhan tigray ' 1| 2| 4 1 2| a0 | 6 |
7 | other ti | urban | tigray | 1| 2| 4 | 1| 2| a0 | 7 |
8 | other ti | urban | tigray | 1| 2 | 4 | 2l 2| a0 | g |
9 | other ti | urban | tigray | 1| 2| 4 | 53l 2| a0 | 9 |
10 | other ti | urban | tigray | 1| 2| 4 | 1| 2| a0 | 10 |
11 | other ti | urban | tigray | 1| 2| 4 1 2| a0 | 11 |
12 | other ti | wurban | tigray | 1| z | 4 | 1| 2| a0 | 12 |
13 | other ti | urban | tigray | 1| 2| 4 | 1| 2| a0 | 13 |

*The collapse command reduces the size of the table so that a household shows up only once in the

data file.

*

Generate food and non-food commodity data files

*Assume Fexp=0 and fexp=. are used to represent non-food expenditure and then
recode fexp (0=.)
*88 changes made
*Similarly,
expenditure and then
recode nfexpe(0=.)

*155 changes made

assume nfexpe=0 and nfexpe=.

are use to represent no non-food

*Let’s check items listed under food and non-food expenditures

*1: under food expenditure
*Expenditure on the Tfollowing items are

column

reported under food expenditure

*Decision: transfer their expenditure to non-food expenditure column

tab cql5 if fexp~=.

replace nfexpe= fexp if (/*

/cql5== 20105]/ /*tetron*/

/cql5== 20108]/ /*nylon*/

/cql5== 20303|/ /*"netela*“*/

/cql5== 20375|]/ /*pants*/

/cql5== 20453|/ /*t-shirts*/

/cql5== 20498]|/ /*others*/

/cql5== 20617|/ /*shirts*/

/cqlb== 20618]/ /*t-shirts*/

/cql5== 20619]/ /*dress other than national*/
/cql5== 20709|/ /*veil (shash)*/

/cql5== 21101}/ /*tailoring and repairs*/
/cql5== 30307]/ /*transportation cost(water fetc*/
/cqlb5== 30402]/ /*firewood others*/
/cql5== 30412]/ /*choping Ffire wood service*/
/cql5== 40113|/ /*food safes*/

/cql5== 40503]/ /*coffee pot*/

/cql5== 40507]/ /*""mitad” ,traditional **/
/cql5== 40698]/ /*others*/

/cql5== 40707|/ /*knives*/

/cql5== 40801|/ /*cup*/

/cql5== 40802]/ /*plates and dishes*/
/cql5== 40803]/ /*jerry can*/

/cqlb5== 41001}|/ /*kerosine lamp & kuraz*/
/cql5== 41002]/ /*Fflash light/torch light*/
/cql5== 41010|/ /*needles & safety pins*/
/cql5== 41298|/ /*others*/

/cql5== 50501]/ /*doctor*s fee*/

/cqlb5== 60101]/ /*purchase of animal transport*/
/cql5== 60102]/ /*purchase of private car*/
/cql5== 60212]/ /*coolie charges*/

/cql5== 72002])/ /*exercise books*/

/cql5== 72003|/ /*papers and photocopying*/
/cql5== 72004|/ /*notebooks*/

/cql5== 72005]/ /*pencils*/

/cql5== 72006]/ /*"pen, marker etc."*/
/cql5== 72009]/ /*files and carbones*/
/cql5== 80109]/ /*belt*/

/cqlb5== 80113|/ /*mirror>/

/cql5== 80206]/ /*watches*/

/cql5== 80301|/ /*hair dressing*/

*/cql5== 90308)&Fexp~=. /*religious contribution*/
*53 real changes made
* and

recode fexp(0.00001/max=.) if (/*

/cql5== 20105]/ /*tetron*/

/cqlb5== 20108]/ /*nylon*/

/cql5== 20303|/ /*"netela*“*/

/cql5== 20375|/ /*pants*/

/cql5== 20453|/ /*t-shirts*/

/cql5== 20498]|/ /*others*/

/cqlb== 20617]/ /*shirts*/

/cqlb== 20618]/ /*t-shirts*/

/cql5== 20619]/ /*dress other than national*/
/cql5== 20709|/ /*veil (shash)*/

5

/cql5== 21101})/ /*tailoring and repairs*/

/cql5== 30307|/ /*transportation cost(water fetc*/
/cql5== 30402]/ /*Ffirewood others*/

/cql5== 30412])/ /*choping fire wood service*/
/cqlb== 40113|/ /*food safes*/

/cql5== 40503]/ /*coffee pot*/

/cql5== 40507 |/ /*""mitad”,traditional **/
/cql5== 40698]/ /*others*/

/cql5== 40707 |/ /*knives*/

/cql5== 40801]/ /*cup*/

/cql5== 40802]/ /*plates and dishes*/
/cql5== 40803|/ /*jerry can*/

/cql5== 41001})/ /*kerosine lamp & kuraz*/
/cql5== 41002]/ /*flash light/torch light*/
/cql5== 41010]/ /*needles & safety pins*/
/cql5== 41298]|/ /*others*/

/cql5== 50501]/ /*doctor"s fee*/

/cql5== 60101]/ /*purchase of animal transport*/
/cql5== 60102]/ /*purchase of private car*/
/cqlb== 60212]/ /*coolie charges*/

/cql5== 72002]/ /*exercise books*/

/cqlb5== 72003|/ /*papers and photocopying*/
/cql5== 72004]/ /*notebooks*/

/cql5== 72005]/ /*pencils*/

/cql5== 72006]/ /*"pen, marker etc."*/
/cql5== 72009]/ /*Files and carbones*/
/cql5== 80109]|/ /*belt*/

/cql5== 80113|/ /*mirror*/

/cql5== 80206]/ /*watches*/

/cql5== 80301]/ /*hair dressing*/

*/cql5== 90308)&Fexp~=. /*religious contribution*/

*56 real changes made
*re-checking
tab cql5 if fexp~-=.

*2: Non-food expenditure

tab cql5 if nfexpe~=.

*Expenditure on the following items are reported under non-food expenditure
column

*Note: the recorded values for all of them are zero except for barley for
beer

*Decision: transfer their expenditure to food expenditure column

*note:avocado/cocounat is non-food expenditure

replace fexp=nfexpe if (/*

/ cql5==109|/ /* barley for beer*/
/ cql5==201|/ /* fenugreek*/

/ cql5==208|/ /* fenu greek*/

/ cql5==308|/ /* mutton*/

/ cql5==802|/ /* cabbage*/

/ cql5==1202|/ /* pepper green*/
/ cql5==1209|/ /* orange powder*/
/ cql5==1335]/ /* pepper whole*/
/ cql5==1401|/ /* black pepper*/
/ cql5==1403|/ /* long pepper*/

6

/ cql5==1404|/ /* white cumin*/

/ cql5==1405|/ /* black cumin*/

/ cql5==1406]/ /* ginger*/

/ cql5==1407|/ /* mixed spices*/

/ cql5==1421|)/ /* salt*/

/ cql5==1701|/ /* barley for beer*/
/ cq15==11106)& nfexpe~=. / mead/ honey wine*/

*34 real changes made

recode nfexpe(0.00001/max=.) if (/*

/ cql5==109|/ /* barley for beer*/
/ cql5==201|/ /* fenugreek*/

/ cql5==208|/ /* fenu greek*/

/ cql5==308|/ /* mutton*/

/ cql5==802|/ /* cabbage*/

/ cql5==1202|/ /* pepper green*/

/ cql5==1209|/ /* orange powder*/
/ cql5==1335|/ /* pepper whole*/

/ cql5==1401|/ /* black pepper*/

/ cql5==1403|/ /* long pepper*/

/ cql5==1404|/ /* white cumin*/

/ cql5==1405|/ /* black cumin*/

/ cql5==1406]/ /* ginger*/

/ cql5==1407|/ /* mixed spices*/
/ cql5==1421|/ /* salt*/

/ cql5==1701|/ /* barley for beer*/
/ cgq1l5==11106)& nfexpe~=. / mead/ honey wine*/

*34 changes made
*re-checking
tab cql5 if nfexpe~=.

*To keep the original data file intact we save changes to a new file
save ""$dat\STATA\cons2004 ict_rvl.dta", replace

*Generate food commodity data

(™ Data Editor B e
| Preserve ” Restore] [Sort J e [rr ” Hide | | Delete... |
wr[1] =
ur ' clge ' clqg? [clga [clqg? ' expen [quan [fexp [nfexpe
1 88 | B | 5 | 0| 252.26764 | 90000 | 252.2676 | :
2| rural 88 | 81 | 5 | 0 | 150.12 | 36 | .| 150.12
3| rural | 88 | 8l | 5 | 0| 470.37277 | 185712 | 470.3728 | o 1
4| rural | 88 | 81 | 5 | 0 | 67.888565 | 18240 | 67.88857 |
5| rural | 88 | g1 | 5 | o | 9o.727274 | 130956 | 90.72727 | .
6| rural | 88 | 1L | 5 | 0| 204.308 | 7 | . | zos4.308 |
7| rural | 88 | g1 | 5 | 0| 16.3156 | g | . | 16.3156
&8 rural | 88 | g1 | 5 | 0 | 30.452 | 2 | .| 30.452
9| rural | 88 | B | 5 | 0| 453.33958 | 34440 | 453.3396 | :
10| rural | 88 | 81 | 5 | 0| z.08472 | 8 | . | z.0e472
11 rural | 88 | 8l | 5 | 0| 919.47577 | 649872 | 919.4758 |]
12| rural | 88 | 81 | 5 | 0| 35.31336 | 60 | .| 3531336
13 rural | 88 | g1 | 5 | 0| 24.27868 | a0 | . | za.27s88 |

*The command below drops all non-food items. An item can only be either food or non-food. As a
result for a food item, its entry under nfexpe is missing and vice versa. All missing values are dropped,
leaving only food items.

use ""$dat\STATA\cons2004 ict _rvl.dta", clear
keep if fexp!=_](((cql5>=4 & cql5<=1406)](cql5>=1421 & cql5<=11106)/*
*/ |cql5==41206)&Fexp==_&nfexpe==.)

(5 Data Editor | e— ss—.
[Preserve][Restore] [Sork] L [i][Hide] [Delete...]
rep[1] = &
rep ur clgé clg? clgs clqg9 quan fexp

i rural 88 z z & 7620 | 26.83742
? | other ti urban 1 ? 21 1 6000 | 15.09774
3 | other ti urban 1 3 41 5 43680 | 110.1697
4 | other +i urban 1 1 20 16 1020 | 2.572644
5 | tigray r rural 88 z 1 7 45000 123.3818
6 tigray r rural 38 1 z 10 13356. 06 26.723
7 | other ti urban 1 1 30 10 25800 | 65.07276
8 | other ti urban 1 1 12 10 3000 7.5666
9 | other ti urban 1 1 40 7 67500 | 163.8496
10 | other ti urban 1 1 40 g 270000 680, 994
11 mekele urban 1 5 31 3 1516458.1 201. 2867
1z mekele urban 1 5 32 3 157080 395.2588
13 mekele urban 1 5 32 13 359040 905 .5707

tab cql5

drop expen nfexpe c1ql0 clqgll

des

*br

*tab cql5

save "'$dat\STATA_RV\foodcommodity.dta", replace

* Generate non-food commodity

use "$dat\STATA\cons2004_ict_rvl.dta", clear

des

*br

keep 1f nfexpel=.](((cql5>=1408 & cql5<=1419)](cql5>=11302 & cql5<=30498)/*
*/ 1¢cql5==40403]| cql5==41216]cql5==40113]| cql5==90308)&Fexp==_&nfexpe==.)
tab cql5

drop expen fexp clglO clqll

drop g_calo n_calo

save ""$dat\STATA RV\non-foodcommodity.dta", replace

log close
set more on

DAY TWO
Description

On day two of the training, unique household identifiers are created for the food commodities data file.
The reason behind is that the data being commodity level, there are a number of zones in a region, a
number of woredas in a zone, a number of towns in a woreda etc. therefore, in order to identify which
household, in which ea, which fa etc, it is necessary to create unique household id.

The data also suffers from duplicate cases. These duplicates are dropped and further data cleaning is
done to see if the reported data has expected properties.

Foodcomodity.do

*"D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\do"
clear

set mem 500m

set more off

set type double

capture log close

gl dat "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05"
gl prg "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\log"

log using "$prg\foodcommodity.log", replace
/*

*

File details
File name "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-
05\do

Created by: Nigussie Tefera
Date first version: 27 March 2009
Date this version: 10 April 2009

Purpose of file: Check data found in "foodcommodity.dta" by
(1) Constructing unique hh id
(2) Checking for duplicate observations
(3) Doing range checks
(4) Making corrections to data
(5) Creating new data file with corrected values

*

*/

** Step 1: Get the data
use "'$dat\STATA RV\foodcommodity.dta", clear

** Step 2: Generate unique household identifier

/*

We need to know the maximum digits our unique id identifier variable may
contain(has)

in Stata "double'" has maximum of 16 digits of accuracy (for numerical values)

IT we count and the total digits that our key variables have, it exceeded 16
digits

(17 digits). so we need to recode as followes
*/

recode c1q7(101=82)(110=83)(113=84)(123=86)(126=94)

gen double hhid =c1gq2*10714+c1q3*10"12+c1g4*10"M10/*
*/ +clg5*1079+c1lq6*10°"7+clq7*107"5+c1q8*10™2+cl1lq9

format hhid %20.0F
format cql5 %20.0F
format quan %10.0F
format g_calo n_calo %10.0f

label var hhid"Unique household id"
order hhid clg2-clg9 rep ur

**Step 3:Checking for duplicated observations
egen rmiss=rmiss(clqg2-n_calo)

tab rmiss,m

*no observation for 3 cases but up to cql9
*Decision: drop them

drop if rmiss==

*3 observations deleted

drop rmiss

*check for dupliacte observation

sort hhid cql5-n_calo

qui by hhid cql5-n_calo:gen dupobs=cond(_N==1,0, n)
tab dupobs,m

*3 duplicate observation

*decision: drop the duplicated once

drop if dupobs>=2

*3 dublicated observation deleted

drop dupobs

** Step: 4 Data cleaning

*label items names using do file for coding
do ""$dat\do\code.do"

label values cql5 code

tab cql5

/*

Initially, we thought that different values are given for the same item
listed below.

However, thanks to those who know the data structure well, we learned that
value from 1-100 are given for grains and the others (101-1000) for floor. We
decided to leave them as they were.

Moreover, if we are interested on aggregate figures we can run these commands
and once again re-check whether it has duplicate observation.

recode cql15(114=15) (40607 40739=40516)

recode cq15(110=11)(108 120 =8)(107=7)(40716 =40401)

recode cql5(302 402=202)(40220=40116) (40715=40506)

recode cql15(112=13)(40810=40609) (72503 72603=72106) (208=208)
recode cql15(40517=40113)(50607=50509) (40724=40514) (309 406=205)
recode cql15(20406=20322) (50606=50506) (301 401=201)

10

recode cq15(20304=40610)(50603=50503) (307 405=204)(2512=603)

recode cq15(111=12)(2605=2004) (304 1421=215)(20503 20306 20505=20303)
recode cq15(122=19)(2504=811)(50611=50511)(2101=1335)

recode cq15(20458=20624)(20375=20536) (303 403 =203)

recode cq15(20533 20623=20370)(113=14) (312=312)(211=209) (2511=601)
recode cq15(23531=20350)(102=2)(3 103=3)(101=1)(20403 20512 20606=20314)
recode cq15(305 404=207)(20909=20809)(20910=20810)

recode cq15(105=5)(703=702)(106 =6)(104=4)(20424=20353)(20429=20358)

*/

*/

All units of measurement were reported in gram and further we are not
interested on source of expenditure and types of expenditure and conversion
factors. Hence, we aggregate them as follows.

/*

*Now that unique household id is created, the commodities are labeled, and the data cleaned,
running the ‘collapse’ command below produces a data file presents household id, labeled
consumption item along with other variables.

collapse (sum) quan fexp qt _epr g calo n_calo /*
*/(mean)v_epr st _epr (First)weight, by(hhid clg2- ur cql5)

label var quan”Total quantity (in gram)"

label var fexp'"Annual food expenditure (in Birr)"
label var gt _epr'External quanitity"

label var g_calo"Gross calorie (in...)"

label var n_calo”Net calorie (in...)"

label var v_epr" External price"

label var st _epr'Standard price"

label var weight"Weight"

{7 Data Editor T T S AR e

{Frasarve ” Hesmra] I Sort] €L [> ” Hide: J IDeIele J
hhid[1] =

hhid clg2 clq3 clgd clgs clge clq7 clqgs clq9 rep ur cqls

" oiozscrocoion SR s
101024010204001 tigray 40
101024010204001 tigray 40
101024010204001 tigray 40
101024010204001 tigray 40
101024010204001 tigray 40
101024010204001 tigray 40

1 | other ti urban wheat white

1

1

1

1

1

1
101024010204001 tigray 40 1 | other ti urban african millet

1

1

1

1

1

1

1

other ti urban barley white
other ti urban barley and wheat
other ti urban malt barley
other ti urban teff mixed
other ti urban wheat white
other ti urban sorghum

|~ v sfw| R

w

101024010204001 tigray 40 other ti urban wheat 'industrial product’
10 101024010204001 tigray
11 101024010204001 tigray
12 101024010204001 tigray
13 101024010204001 tigray
14 101024010204001 tigray
15 101024010204001 tigray

40
40
40
40

other ti urban horse beans
other ti urban chick peas
other ti urban peas
other ti urban peas
40
40

other ti urban Tentils

I (YUY Y IS (P Y) (Y Y) Y Y R Y Y
| ra | ol ra o e e e e | |
PN PN I) PR P PN I PR P S P S
Rlrrlr|rr R R R R R R
[N RN R N Y N NV N RN N Y R)

other ti urban ground nuts-loose

** Step 5:Exploring the data (visiual inspection) for further data cleaning
des

count

count if ur==1

tab clg2

tab ur

tabulate cl1g2, plot

des hhid fexp

codebook ur

inspect fexp

11

sum Fexp

sum fexp if fexp~=0==1,detail

histogram fexp if cql5==1,normal

graph box fexp if cql5==102, by(ur)

kdensity fexp if cql5==2

pnormal fexp if cqlb==

gnormal fexp iIf cql5==105

tabstat fexp,s(mean median sd cv min max) by(cql5)
table cql5 ur,c(mean fexp)

** step: 6 save File and close log file
save ""$dat\STATA_RV\foodcommodity rvi.dta', replace

use ""'$dat\STATA_RV\foodcommodity rvl.dta", clear

12

DAY THREE

Description

On day three of the training, unique household identifiers are created for the non-food commodities
data file created earlier. The rationale for doing so is that the data being commodity level, there are a
number of zones in a region, a number of woredas in a zone, a number of towns in a woreda etc.
therefore, in order to identify which household, in which ea, which fa etc, it is necessary to create
unique household id.

The data also suffers from duplicate cases. These duplicates are dropped.

Non-foodcommodity.do

*"D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\do"
clear

set mem 500m

set more off

set type double

capture log close

gl dat "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05"
gl prg "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\log"

log using "$prg\non-foodcommodity.log", replace
/*

*

File details
File name "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-
05\do

Created by: Nigussie Tefera
Date first version: 27 March 2009
Date this version: 10 April 2009

Purpose of file: Check data found in "foodcommodity.dta" by
(1) Constructing unique hh id
(2) Checking for duplicate observations
(3) Doing range checks
(4) Making corrections to data
(5) Creating new data file with corrected values

*/

** Step 1: Get the data
use ""'$dat\STATA_RV\non-foodcommodity.dta", clear

** Step 2: Generate unique household identifier
*Note double has 16 digits of accuracy

recode c1q7(101=82)(110=83)(113=84)(123=86)(126=94)

13

gen double hhid =c1g2*10"14+c1q3*10"12+c1g4*10°M10/*
*/ +clg5*1079+c1q6*10°"7+c1q7*10"5+¢c1g8*10™2+c1q9

format hhid %20.0Ff
format hhid %20.0F
format cql5 %20.0F
format quan %10.0F

label var hhid"Unique household id"
order hhid clg2-cl1lg9 rep ur

**Step 3:data cleaning

egen rmiss=rmiss(clqg2-st_epr)

tab rmiss,m

drop rmiss

*check for dupliacte observation

sort hhid cql5-st_epr

qui by hhid cql5-st_epr:gen dupobs=cond(_N==1,0, n)
tab dupobs,m

*457 observations have duplication
*decision: drop duplicated observations
drop if dupobs>=2

*457 observation deleted

drop dupobs

** Step: 2 Data cleaning
*label values of item codes
do ""$dat\do\code.do"

label values cql5 code

tab cql5

/*

The same items seem to be given different values. As we did for food items

we had discussion and agreed that the materials from which items made of

may vary. For instance, cups can be made of from plastic or stainless steel.
However, if we are not interested on that specification we can use '"recode
do file

aggregate the items

*/

*do "$dat\do\recode.do"

collapse (sum)quan nfexpe qt_epr /*

*/(mean)v_epr st _epr weight, by(hhid clg2- ur cqlb)
label var quan"Total quantity(in gram)"

label var nfexpe"Annual non-food expenditure (in Birr)"
label var qt_eprExternal quanitity"

label var v_epr" External price"

label var st_epr'Standard price"

label var weight"Weight"

*step: 4 save and close log file
save ""$dat\STATA RVA\non-foodcommodity rvil.dta", replace

*aggregate all non-food-expenditure at hh level
egen tnfexpe=sum(nfexpe), by(hhid)

14

collapse (first)tnfexpe weight, by(hhid clg2- ur)

label var tnfexpeTotal non-food expenditure (in Birr)"
label var weightweight"

sort hhid
save "'$dat\STATA_RV\tnonfoodexp.dta', replace

log close
set more on

15

DAY FOUR

Description

As a continuation to topics on day of the STATA training, based on the food commodity data file created
then, fourteen food categories are generated. Then, weighted regional and woreda level prices are
generated for use in demand estimation.

Moreover, on day three of the training, unique household identifiers are created for the household
demographic data file. Checking for duplicates and data cleaning are also done. Finally, a data file with
corrected values is created.

Foodcommodity.do

*Day 4: Stata training

*Food categories

recode cql5 (1/198=1)(201/498=2)(501/598=3)/*

/(601/698 701/798=4)(801/898=5)/
/(1001/1098=6)(1101/1198=7)(1201/1398=8)(1401/1498=9)/
/(1501/1598=10) (1601/1698=11)(41206 1701/1798 2101/2198=12)/
/(1801/1998 901/998 2501/2598 =13)/

/ (2001/2098 2201/2298 2601/2698 11001/11098 11101/11198=14)/
*/ ,gen(foodcat)

*we classfied 2601/2698 under Beverages &alchols

label var foodcat'Food category by major components'
label define mcat 1"Cereals' 2"pluses™ 3"0il seeds'/*
/ 4"prepared food &Bread" 5"Meat''/

/ 6"Milk, cheese and egg" 7"oils &fats''/

/ 8"Vegetbles&fruits"” /

/ 9"Spcies”10"Potatoes and other tubers"/

/ 11"'Coffe, tea &chat"/

/ 12"'0ther foods"™ 13"Restourants ahd hotels'/

*/ 14'"Beverages&alchols"™, modify

label value foodcat mcat

*Generate weighted prices at woreda and regional levels
egen con_woreda=sum(fexp), by(clgq2-clg4 foodcat)

gen weightwp=fexp/con_woreda if con_woreda~=.

gen wprice_w=st_epr*weightwp

egen con_region=sum(fexp), by(clg2 foodcat)

gen weightrp=fexp/con_region if con_region~=.

gen rprice_r=st_epr*weightrp

collapse (sum) quan fexp g calo n_calo wprice w/*
*/ rprice_r (First) weight, by(hhid-ur foodcat)

egen tfexp=sum(fexp), by(hhid)
label var quan”Total quantity (in gram)"
label var fexp"Annual food expenditure (in Birr)"

label var g _calo"Gross calorie (in...)"

16

label var n_calo"Net calorie (in...)"

label var weight"Weight"

label var wprice_w"Weighted price at woreda level”
label var rprice_r"Weighted price at regional level
label var tfexp'"Total food expenditure (in birr)"

sort hhid
save "'$dat/STATA_RV/totalfoodexp.dta',replace

log close
set more on

{7 Data Editor R RS . B ______________ [
Sort i3 55 Hide Delete...
vari4[4] = |
hhid clgé clag? clgs clqg9 rep ur foodcat wprice_w rprice_r weight tfexp
1 101024010204001 1 2 40 1 | other ti urban Cereals . 08351361 . 00165717 1226.07 7444, 3271
2 101024010204001 1 2 40 1 | other ti urban pluses . 20442279 . 00561437 1226.07 7444.3271
3 101024010204001 1 2 40 1 | other ti urban 011 seeds .49516825 . 00215679 1226.07 7444.3271
4 101024010204001 1 2 40 1 | other ti urban prepared food &Bread . 09162087 . 00347975 1226.07 7444, 3271
5 101024010204001 1 2 40 1 | other ti urban Meat . 68360504 . 02770741 1226.07 7444.3271
(3 101024010204001 1 2 40 1 | other ti urban Milk, cheese and egg . 21023908 . 009665828 1226.07 7444.3271
7 101024010204001 1 2 40 1 | other ti urban 0ils &fats 4231701 . 02000708 1226.07 7444, 3271
8 101024010204001 1 2 40 1 | other ti urban Vegetbles&fruits .11548079 . 00393757 1226.07 7444, 3271
9 101024010204001 1 2 40 1 | other ti urban Spcies . 27970455 . 00944164 1226.07 7444.3271
10 101024010204001 1 2 40 1 | other ti urban | Potatoes and other tubers . 0312818 00072513 1226.07 7444, 3271
11 101024010204001 1 2 40 1 | other ti urban Coffe, tea &chat .40164859 .01322962 1226.07 7444, 3271
12 101024010204001 1 2 40 1 | other ti urban Other foods . 2540425 .01192195 1226.07 7444.3271
13 101024010204001 1 2 40 1 | other ti urban Restourants ahd hotels .01415791 .00143721 1226.07 7444,3271
14 101024010204001 1 2 40 1 | other ti urban Beverages&alchols . 07192618 . 00407045 1226.07 7444, 3271
15 101024010204002 1 2 40 2 | other ti urban Cereals . 02670971 . 00053 1226.07 3685.28384

Hhdemographics.do

*""D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\do"
clear

set mem 500m

set more off

set type double

capture log close

gl dat "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05"
gl prg "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\log"

log using "$prg\demographic.log'”, replace
/*

*

File details
File name "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-
05\do

Created by: Nigussie Tefera
Date first version: 27 March 2009
Date this version: 10 April 2009

Purpose of file: Check data found in "hhdemographic" by
(1) Constructing unique hh id
(2) Checking for duplicate observations
(3) Doing range checks
(4) Making corrections to data
(5) Creating new data file with corrected values

17

*

*/

** Step 1: Get the data
use "'$dat\STATA_ RV\hhdemographic.dta", clear

** Step 2: Genenerate unique houshould id identifier
*Note double has 16 digits of accuracy

recode c¢1q7(101=82)(110=83)(113=84)(123=86)(126=94)

gen double hhid =c1gq2*10714+c1q3*10°12+c1g4*10°10/*
*/ +clg5*10M9+c1q6*10"N7+clgq7*10"5+c1q8*10”2+c1g9
format hhid %20.0F

label var hhid"Unique household id"
order hhid clg2-clg9 rep ur hhsize hholdings weight

** Step 3:data cleaning

egen rmiss=rmiss(hhsize-hholdings)

tab rmiss,m

drop rmiss

*check for dupliacte observation

sort hhid hhsize

qui by hhid hhsize:gen dupobs=cond(_N==1,0, n)
tab dupobs,m

drop dupobs

save "'$dat\STATA_RV\hhdemographic_rvl._dta", replace

log close
set more on

18

DAY FIVE

Description

On day five of the training the separate data files (household demographic, food commodity and non-
food commodity) created and cleaned over the course of the earlier four days are merged and data
transformations were done to ready the data for demand estimation. The transformations included
computation food budget shares, per capita expenditure, and logarithmic transformation.

Moreover, identification of outliers in per capita food expenditure and replacement thereof of outliers
by median is done. Finally, simple demand function is estimated and elasticities are computed.

Totalexpenditure.do

*"D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\do"
clear

set mem 500m

set more off

set type double

capture log close

gl dat "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05"
gl prg "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-05\lo0g"

log using "$prg\totalexp.log”, replace
/*

*

File details
File name "D:\EthiopiaDATA\CSA Survey data\WMS and HICES\HICES\Year 2004-
05\do

Created by: Nigussie Tefera
Date first version: 27 March 2009
Date this version: 10 April 2009

Purpose of file: merge data files and run simple demand function
*

*/

** Step 1: Get the data

use "$dat\STATA_RV\totalfoodexp.dta', clear

sort hhid

merge hhid using ""$dat\STATA RV\tnonfoodexp.dta"/*
*/"'$dat\STATA_RV\hhdemographic_rvi.dta"

tabl m*
drop _m*

egen texp=rsum(tfexp tnfexp)

label var texp'total consumption expenditure"

gen tshare=tfexp/texp if texp~=0

label var tshareFood consumption expenditure share in total expenditure”

19

*check for normality
histogram tfexp,normal
kdensity tfexp,normal

gen Inpc_texp=In(texp/hhsize)
gen Inpc_tfexp=In(tfexp/hhsize)
gen Inpc_quan=In(quan/hhsize)
gen Inwprice_w=In(wprice_w)

gen Inpc_fexp=In(fexp/hhsize)

label var Inpc_texp''Log of per capita total expenditure"
label var Inpc_tfexp'Log of per capita total food expenditure"
label var Inpc_fexp'Log of per capita food expenditure"
label var Inpc_quan*Log of per capita quantity expenditure
label var Inwprice w'Log of weight price at woreda lavel

/*

* Once again, check for outliers

egen Inpc_median=median(Inpc_tfexp), by(ur)
egen sd=sd(Inpc_tfexp), by(ur)

gen ratio=(Inpc_tfexp-Inpc_median)/sd if sd~=0
gen outlier=(ratio>=3)

tab outlier
tabstat Inpc_tfexp[aw=weight] if outlier==0/*
*/ ,s(mean median sd cv min max) by(clg2) format (%9.2fc)

tabstat Inpc_tfexp[aw=weight] if outlier==1/*
*/ ,s(mean median sd cv min max) by(clg2) format (%9.2fc)

table ur [pw=weight] if outlier==1,c(n outlier) row

gen Inpc_tfexpl= Inpc_tfexp
replace Inpc_tfexpl=Inpc_median if outlier==1

tabstat Inpc_tfexp[aw=weight] if outlier==0/*
*/ ,s(mean median sd cv min max) by(clg2) format (%9.2fc)

tabstat Inpc_tfexp[aw=weight]/*
*/ ,s(mean median sd cv min max) by(clqg2) format (%9.2fc)
*/

*Non-parametric test

twoway/>*

/(kdensity Inpc_texp[aw=weight], bw(0.2)/

/ legend(label (1 "AII')))/

/(kdensity Inpc_texp[aw=weight] if ur==1, bw(0.2)/
/ legend(label (2 "urban'™)))/

/(kdensity Inpc_texp[aw=weight] if ur==2, bw(0.2)/
*/ legend(label (3 ""Rural'™)))

twoway/>*

/(Ipoly share Inpc_texp [aw=weight] if ur==1,bw(0.2))/
*/(Ipoly share Inpc_texp [aw=weight] if ur==2, bw(0.2))
twoway/>*

20

*/(Ipoly tshare
*/(lpoly tshare
*/(1poly tshare
*/(1poly tshare
*/(Ipoly tshare
*/(Ipoly tshare

Inpc_texp
Inpc_texp
Inpc_texp
Inpc_texp
Inpc_texp
Inpc_texp

*simple demand function

[aw=weight]
[aw=weight]
[aw=weight]
[aw=weight]
[aw=weight]
[aw=weight]

= = = = = =

clg2==1,bw(0.2))/*
clq2==14,bw(0.2))/*
clq2==2,bw(0.2))/*
clgq2==4,bw(0.2))/*

c1g2==3, bw(0.2))

clg2==1,bw(0.2))/*

xi:reg Inpc_quan Inpc_fexp Inwprice_w hhsize i.clg2[aw=weight] if foodcat==

foreach foodcat in 123456789 10 11 12 13 14 {

tab foodcat i1f foodcat=="foodcat”
Xxi: regress Inpc_quan Inpc_fexp Inwprice_w hhsize i.clg2[aw=weight]/*

*/ it Toodcat==
* Expenditure e

~“foodcat”

lasticity

disp _b[Inpc_fexp]

* Price elastic

ity

disp _b[Inwprice_w]

*Food i1tems consumption

expenditure

expenditure

gen ishare=fexp/tfexp if tfexp-=.

egen avgishare= mean(ishare), by(foodcat)

foreach foodcat in 123456789 10 11 12 13 14 {

tab food if foodcat=="foodcat"”

quietly sum ishare if foodcat=="foodcat"
= r(mean)

local avgishare
regress ishare

Inpc_texp

* Average budget share
disp "avgishare*®

* Expenditure e

lasticity

share

in

total

food

consumption

Inwprice_w hhsize[aw=weight] if foodcat=="foodcat"

disp 1+ b[Inpc_texp]/ avgishare®

* Price elastic

ity

disp _b[Inwprice w]/ avgishare™ - 1

*the end
log close
set more on

21

ANNEX

\#

IFPRI

Reference Guide

for

Stata

Bingxin Yu

Development Strategy and Governance Division
International Food Policy Research Institute

Reference Guide for Stata

Introduction

Chapter 1. Introduction
Chapter 2. Getting Started

Chapter 3. Input and Import Data

Chapter 4. Export Data

Data Exploration

Chapter 5. Examine Dataset

Chapter 6. Generate and Organize Variables

Chapter 7. Descriptive Statistics

Chapter 8. Normality and Outlier

Chapter 9. Graphing Data

Chapter 10.
Chapter 11.

Analysis
Chapter 12.
Chapter 13.
Chapter 14.
Chapter 15.
Chapter 16.

Extensions
Chapter 17.
Chapter 18.
Chapter 19.

Statistical Tests

Data Management

Linear Regression
Logistic Regression
Simulations

System Equations

Simultaneous Equations

Troubleshooting and Update
Advanced Programming

Helpful Resources

Chapter 1. Introduction

Why Stata?

Stata is a package that offers a good combination of ease to learn and power. It has numerous
powerful yet simple commands for data management, which allows users to perform complex
manipulations with ease. Under Stata/SE, one can have up to 32,768 in a Stata data file and
11,000 for any estimation commands.

Stata performs most general statistical analyses (regression, logistic regression, ANOVA, factor
analysis, and some multivariate analysis). The greatest strengths of Stata are probably in
regression and logistic regression. Stata also has a very nice array of robust methods that are very
easy to use, including robust regression, regression with robust standard errors, and many other
estimation commands include robust standard errors as well.

Stata has the ability to easily download programs developed by other users and the ability to
create your own Stata programs that seamlessly become part of Stata. One can find many cutting
edge statistical procedures written by other users before and incorporate them into his/her own

Stata program. Stata uses one line commands which can be entered one command at a time or
can be entered many at a time in a Stata program.

The Stata interface

1. Windows

When Stata is running, there are a number of “windows” within Stata.

~ioix

File Edit Prefs Data Graphics Statistics User Window Help

2| 8| ¢ =@E 3 o|e [var x|
Target: Command Yindow

=
i

i s s s r s ey - Copyright 1984-2003
StatisticssData Analysis StataCorp

4905 Lakerway Dwiuve

Special Edition GCollege Station. Texas 77845 USA
800-8TATA-PC http://uww.stata.com
279-696-4600 statalPstata.con
979-696-4601 (fax>

Bingle-user Stata for Windows perpetual license:
Serial number: 81780535239

Licensed to: Dawn Brancati
Columbia University

1. </m#t option or -set memory-2> 10.00 MB allocated to data
2 {s/uft option or -set maxvar-> 5000 maximum variables

C:\DATA

a1 Startl J)My Documents ~ ** J @ htu:ls:ﬂwebmail.hmdc.ha...| @ Comments_4Micah - Micr... | @ Introduction to SEE_DE---"@ Stata/SE 8.2 |% H!"% %g 3:34PM

The command window on the bottom right is where you'll enter commands. When you press
ENTER, they are pasted into the Stata Results window above, which is where you will see your
commands execute and view the results. All results will be made to display in black Courier font.

On the left are two convenience windows. Variables window keeps a list of your current
variables. If you click on one of them, its name will be pasted into the current command at the
location of the cursor, which saves a little typing. The Review window keeps a list of all the
commands you've typed this Stata session. Click on one, and it will be pasted into the command
window, which is handy for fixing typos. Double-click, and the command will be pasted and re-
executed. You can also export everything in the Review window into a .do file (more on them
later) so you can run the exact same commands at any time. To do this right-click the Review
window.

When we first open Stata, all these windows are blank except for the Stata Results window. You
can resize these 4 windows independently, and you can resize the outer window as well. To save
your window size changes, click on Prefs button, then Save Windowing Preferences

Entering commands in Stata works pretty much like you expect. BACKSPACE deletes the
character to the left of the cursor, DELETE the character to the right, the arrow keys move the
cursor around, and if you type the text is inserted at the current location of the cursor. The up

arrow does not retrieve previous commands, but you can do that by pressing PAGE UP, or
CTRL-R, or by using the Review window.

2. Menus

Stata displays 9 drop-down menus across the top of the outer window, from left to right:
A. File

Open: open a Stata data file (use)

Save/Save as: save the Stata data in memory to disk

Do: execute a do-file

Filename: copy a filename to the command line

Print: print log or graph

Exit: quit Stata

B. Edit

Copy/Paste: copy text among the Command, Results, and Log windows
Copy Table: copy table from Results window to another file

Table copy options: what to do with table lines in Copy Table

C. Prefs - all Stata-related preferences

D. Data

E. Graphics

F. Statistics

build and run Stata commands from menus

G. User - menus for user-supplied Stata commands (download from Internet)
H. Window - bring a Stata window to the front

I. Help - Stata command syntax and keyword searches

3. Button bar

The buttons on the button bar are from left to right (equivalent command is in bold):
Open a Stata data file: use

Save the Stata data in memory to disk: save

Print a log or graph

Open a log, or suspend/close an open log: log

Open a new viewer

Bring Results window to front

Bring Graph window to front

New Dofile Editor: doedit

Edit the data in memory: edit

Browse the data in memory: browse

Scroll another page when --more-- is displayed: Space Bar
Stop current command or do-file: Ctrl-Break

Chapter 2. Getting Started

Directory commands
We begin by defining directory first.

The pwd command, which stands for print working directory, shows current directory you are in
when Stata firs up.

- pwd
Y:\Stata9SE

The cd command stands for change directory, in this case, to change to the notes directory. The
advantage of working from within a non-Stata directory is not only that Stata and your work are
safe, but also you can use files without spelling out the full path, which can be quite handy.

. cd “u:\notes”

- pwd
u:\notes

The log command starts a log file called testl that keeps a record of the commands and output
during the Stata session.

. log using testl.txt
log: u:\notes\testl.txt
log type: smcl
opened on: 11 Jul 2005, 14:57:25

The log close command closes and saves the current log file.

. log close
The log file, testl.txt, can be viewed with any text editor or word processor.
The cd command fixes current directory, but it might be inconvenient if we need to switch

between Stata files under two or more different paths. We can use global command (which is
actually a macro) to define each path and give us a shortcut in programming.

- global t "u:\notes"
. use S$t\ethiopia.dta, clear

Do file

It is easier to collect all of your Stata commands used to perform a certain task together in one
place, and do all the commands at once rather than one at a time. If modifications are needed,

you will have to start from scratch and try to remember you get so far in the first place. A do file
allows users to keep track of pervious work and to make changes easily. Any command that you
can type in on the command line can be place in a do file. There is a limit of 3500 lines to a do
file.

Do files are created with the do file editor or any other text editor. Any command which can be
executed from the command line can be placed in a do file. Here is a simple example of a do file:

cd u:\notes

log using testl.txt
pwd

log close

You can save this do file as el.do in do file editor.

The doedit command can be used to brings up do file editor.

. doedit
. doedit el.do

There are several ways to run a do file.
1. Touse do command to executes the Stata commands in el.do, display output.

. do el.do

2. To use run command or press ctrl+D key to executes the Stata commands in el.do, but
display no output.

. run el.do

If you would like to add document a do file, but do not want Stata to execute your notes, /* */ is
used.

/* This Stata program illustrates how to read create a do file */
cd u:\notes

log using testl.txt

pwd

log close

Memory commands

Sometimes we might need extra memory to read a big data file.

First you can check to see how much memory is allocated to hold your data using the memory
command. | am running Stata 9 under Windows, and this is what the memory command told me.

. memory
bytes

Details of set memory usage

overhead (pointers) 16 0.00%
data 72 0.00%
data + overhead 88 0.00%
free 10,485,664 100.00%
Total allocated 10,485,752 100.00%
Other memory usage
set maxvar usage 1,816,666
set matsize usage 1,315,200
programs, saved results, etc. 509
Total 3,132,375
Grand total 13,618,127

I have 13 MB free for reading in a data file. | have a data file that’s 33MB big that | want to read,
which is beyond the Stata default memory allocated to me. Thus, I get the error message

no room to add more observations
r(901);

I will allocate 100 MB of memory with the set memory command before trying to use my file.
- set memory 100m

Current memory allocation

current memory usage

settable value description (1M = 1024k)
set maxvar 5000 max. variables allowed 1.733M
set memory 100M max. data space 100.000M
set matsize 400 max. RHS vars in models 1.254M
102.987M

Now that | have allocated enough memory, | will be able to read the file. If | want to allocate
100m (100 megabytes) every time | start Stata, | can type

. set memory 100m, permanently

And then Stata will allocate this amount of memory every time you start Stata.

Chapter 3. Input and Import Data

Create a data set

The clear command clears out the dataset that is currently in memory. We need to do this before
we can create or read a new dataset.

. clear

One of the easiest methods for getting data into Stata is using the Stata data editor, which
resembles an Excel spreadsheet. It is useful when your data is on paper and needs to be typed in,
or if your data is already typed into an Excel spreadsheet. To learn more about the Stata data
editor, see the edit module.

The edit command opens up a spreadsheet like window in which you can enter and change data.
You can also get to the 'Data Editor' from the pull-down "Window' menu or by clicking on the
'Data Editor' icon on the tool bar.

. edit

Enter values and press return. Double click on the column head and you can change the name of
the variables. When you are done click the ‘close box' for the 'Data Editor' window.

Another option is to use input command, then enter your own data set in command window or
do file editor.

nput a b c

O o w

inp
12
45
7 8
end

n

Import external data set

Method 1. Use insheet command

The insheet command is used to read data from a comma separated or tab delimited file (.csv)
created by a spreadsheet or database program. The values in the file must be either comma or tab
delimited. The names are included in the file.

Consider the file comma.txt below that contains three variables, name, midterm, and final,
separated by comma. The file looks like what is shown below (the variable names are indeed the
first line of data.)

name,midterm, final

Smith,79,84
Jones, 87,86
Brown,91,94
Adraktas, 80,84

You can read this kind of file using the insheet command as shown below.

. clear
. Insheet using comma.csv

We can issue the list command to see if the data was read properly.

- list
Ly +
| name midterm Final |
T |
1.] Smith 79 84 |
2.] Jones 87 86 |
3.1 Brown 91 94 |
4. | Adraktas 80 84 |

e +

As you can see, the insheet command was pretty smart. It got the variable names from the first
row of the data. It looks at the first row and can get the variable names from the first row. It
also examines the file and determines for itself whether the data is separated by commas or by
tabs. The exact same command could read the same file but delimited with tabs (you can try
reading a file for yourself).

If the name of variables is not included in the data, you can still read data into Stata using insheet
command.

. Insheet name midterm final using comma.csv

Method 2. Use infile command

WE can also read data from an external ascii file using infile command. The names of the
variables are given followed by the keyword using which in turn is followed by the name of the
file. str10 is not a variable name but indicates that name is a string variable up to 10 characters
long.

The ASCII file called ascii.txt that looks like this:

"Smith" 79 84
"Jones" 87 86
"Brown" 91 94
"Adraktas" 80 84

We use commands below to check if the data is read properly:

. clear
infile str10 name midterm final using ascii.txt

list
e +
| name midterm final |
| == |
1. | Smith 79 84 |
2. | Jones 87 86 |
3. 1 Brown 91 94 |
4. | Adraktas 80 84 |
Ly +

To convert a SPSS file into Stata, in SPSS use “File Save As” to make a .csv file and then in
Stata use the insheet command to read the .csv file in Stata. Another way to do it is to save an
ascii text file and use infile command to import the data into Stata.

Method 3. use infix command

Consider a file using fixed column data like the one shown below.

AMC Concord 22 2930 4099
AMC Pacer 17 3350 4749
AMC Spirit 22 2640 3799
Buick Century 20 3250 4816
Buick Electra 15 4080 7827

Note that the variables are clearly defined by which column(s) they are located. The columns
define where the make begins and ends, and the embedded spaces no longer create confusion.

This file can be read with the infix command as shown below.

infix str make 1-13 mpg 15-16 weight 18-21 price 23-26 using
fixedcolumn.txt
(5 observations read)

Here again we need to tell Stata that make is a string variable by preceding make with str. We
did not need to indicate the length since Stata can infer that make can be up to 13 characters wide
based on the column locations.

The list command confirms that the data was read correctly.

list
e +
| make mpg weight price |
1.] AMC Concord 22 2930 4099 |
2.] AMC Pacer 17 3350 4749 |

10

3. | AMC Spirit 22 2640 3799 |
4. | Buick Century 20 3250 4816 |
5. | Buick Electra 15 4080 7827 |

Open and Save a Stata dataset

The use command loads a Stata dataset into memory for use. Here we load a raw data set from
HICES99 for illustration. The clear option allows Stata to clear the memory of previous data set
in order to load the new one.

. use ethiopia.dta, clear

Stata did not want you to lose the changes that you made to the data sitting in memory. If you
really want to discard the changes in memory, clear option specifies that it is okay to replace the
data in memory, even though the current data have not been saved to disk.

The save command will save the dataset as a .dta file under the name your choose. Editing the
dataset changes data in the computer's memory, it does not change the data that is stored on the
computer's disk. Note that since I’ve defined my current directory by cd command, it is not
necessary to specify the path while saving my data. But if | would like to save the data under a
different directory, | have to put down the path clearly.

. save tl.dta
. save .._\plus\tl.dta

The replace option allows you to save a changed file to the disk, replacing the original file. Stata
is worried that you will accidentally overwrite your data file. You need to use the replace option
to tell Stata that you know that the file exists and you want to replace it.

. save tl.dta, replace

11

Chapter 4. Export Data

Since many different software packages (e.g. Power Point) read in Excel spreadsheets, we will
focus on getting Stata results into Excel spreadsheets. Once you have your results in an Excel
spreadsheet you are ready to either use Excel to format the table or create the graph, or bring the
results into some other software. There are ways to create graphs and to format your results in
Stata, but most people are already familiar with doing all that with one of these 4 software
packages.

There are many ways to get your results out of Stata and into Excel. No matter which way you
choose, it's always a good idea to check that the process did what you expected.

1. From the Stata results window, select text in Stata and paste into Excel. To copy an output
table in Stata, select the table in Stata results window, right click (or Shift+Ctrl+C)to choose
Copy Table, and paste into Excel.

2. From a log file, select text and paste into Excel. Or open the log file (*.log) in Excel as fixed
width file. Make use of Stata's ability to start and stop logging to a log file so that your log file
contains only one table of results. It's easier to have multiple log files with one table per file than
multiple tables and other code in one big log file.

use "'u:\notes\ethiopia.dta"

log using "'testl.log”, replace
collapse (mean) tot_exp, by(regco)
log close

log using "'test2.log", replace
collapse (mean) tot_exp [pweight=weight], by(regco)
log close

3. From a Stata data set, use DBMScopy to convert a Stata data set to an Excel spreadsheet.

4. From a Stata data set, to use the outsheet command to output a spreadsheet that can be read
into Excel.

. outsheet hhid regco tot_exp using excell, replace

Outfile command exports a spreadsheet that can be read into Excel. The wide option causes
Stata to write the data with one observation per line, which could be used to feed into other
software.

. outfile hhid regco tot_exp using excell, wide replace

12

Chapter 5. Examine Dataset

Stata syntax

Most Stata commands follow the same syntax:
[by varilistl:] command [varlist2] [if exp] [in range] [weight], [options]

Items inside of the squares brackets are either options or not available for every command. This
syntax app applies to all Stata commands. In order to use by prefix, the dataset must first be
sorted on the by variable(s).

The [if exp] can be complex, using & (and) and | (or) to join conditions together, like the
example below.

. count if (urban==1) & missing(tot_exp)~=.

Logical operators used in Stata

[\
ENET \
| ~= | notequal |
\ I= H not equal]
>	greater than
>=	greater than or equal
<	lessthan
<=	lessthanorequal
&	and
1 |

Note that == represents IS EQUAL TO.
Stata allows four kinds of weights in most commands:

1. fweight, or frequency weights, are weights that indicate the number of duplicated
observations. It is used when your data set has been collapsed and contains a variable that tells
the frequency each record occurred.

2. pweight, or sampling weights, are weights that denote the inverse of the probability that the
observation is included due to the sampling design. pweights is correct to be used for sampling
survey data. The pweight command causes Stata to use the sampling weight as the number of
subjects in the population that each observation represents when computing estimates such as
proportions, means and regressions parameters. A robust variance estimation technique will

13

automatically be used to adjust for the design characteristics so that variances, standard errors
and confidence intervals are correct. For example,

- sum hhz_usu [pweight=samplewt]

3. aweight, or analytic weights, are weights that are inversely proportional to the variance of an
observation; i.e., the variance of the j-th observation is assumed to be sigma”~2/w_j, where w_j
are the weights. Typically, the observations represent averages and the weights are the number
of elements that gave rise to the average. For most Stata commands, the recorded scale of
aweights is irrelevant; Stata internally rescales them to sum to N, the number of observations in
your data, when it uses them.

Analytic weights are used when you want to compute a linear regression on data that are
observed means. Do not use aweights to specify sampling weights. This is because the formulas
that use aweights assume that larger weights designate more accurately measured observations.
Conversely, one observation from a sample survey is no more accurately measured than any
other observation. Hence, using the aweight command to specify sampling weights will cause
Stata to estimate incorrect values of the variance and standard errors of estimates, and p-values
for hypothesis tests.

4. iweight, or importance weights, are weights that indicate the "importance" of the observation
in some vague sense. iweights have no formal statistical definition; any command that supports
iweights will define exactly how they are treated. In most cases, they are intended for use by
programmers who who need to implement their own analytical techniques by using some of the
available estimation commands. Special care should be taken when using importance weights to
understand how they are used in the formulas for estimates and variance. This information is
available in the Methods and Formulas section in the Stata manual for each estimation command.
In general, these formulas will be incorrect for computing the variance for data from a sample
survey.

Stata accepts unambiguous abbreviations for commands and variable names. For example, we
can just type

.des

Or

.d

To obtain the same output as use

. describe

Please refer to Stata manual for the exact rules of abbreviation.

14

Dataset examining commands

The list command without any variable names displays values of all the variables for all the
cases. list command with variable names displays values of variables listed. in option gives the
range of variables.

list hhid urban
list hhid tot exp regco urban hhz_usu in 1/5

| hhid tot_exp regco urban hhz_usu |
T —— PR |
101010888130501 5.572000027 1 0 2]
101010888130502 3.738346577 1 0 1]
101010888130503 13.01241112 1 0 5]
101010888130504 2.75808239 1 0 1]
101010888130505 4.473479271 1 0 2]

ahrWNPEF

Here we look at hhid, tot_exp, regco, urban, hhz_usu for the first 5 observations.

Note about --more-- whenever it fills up the computer screen. Pressing the space bar will display
the next screen, and so on, until all of the information has been displayed. To get out pf --more--,
you can click on the “break” button, select “Break” from the pull-down “Tools” menu, or press
the “q” key.

The if exp qualifier allows you to list values for those cases for which the exp is "true.”

list hhid if tot_exp==.
list hhid urban tot_exp if regco==1

The first list displays all cases for which tot_exp is missing. Stata uses "." to indicate missing
values. The if regco==1 only displays households in region 1.

The browse command is similar to edit , except that it will not allow users to change the data.
The browse command is a convenient alternative to list command, but users can view the data
through data editor instead of results window.

We can use the describe command to displays a basic summary of a Stata dataset, describing the
number of observations in the file, the number of variables, the name of variables, and variable
format and label.

. describe regco
. describe

Contains data from ethiopia.dta

obs: 17,332
vars: 5 11 Jul 2005 15:24
size: 762,608 (99.3% of memory free)

15

storage display value

variable name type format label variable label

hhid double %20.0F

tot_exp double %12.0g Total daily expenditures

regco double %12.0g Region

urban double %12.0g Urban

hhz_usu double %12.0g Number of usual household
members

The codebook command is a great tool for getting a quick overview of the variables in the data
file. It produces a kind of electronic codebook form the data file, displaying information about
variables' names, labels and values.

. codebook
. codebook hhz_usu

hhz_usu
Number of usual household members

type: numeric (double)

range: [1,18] units: 1
unique values: 18 missing .: 0/17332
mean: 4.7466
std. dev: 2.39059
percentiles: 10% 25% 50% 75% 90%
2 3 4 6 8

Another useful command for getting a quick overview of a data file the inspect command.
inspect command displays information about the values of variables and is useful for checking
data accuracy.

. Inspect
. Inspect hhz_usu

hhz_usu: Number of usual household members Number of Observations
——— Non-
Total Integers Integers
| # Negative - - -
| # Zero - - -
| # # Positive 17332 17332 -
\ # # mmme— e
| # # Total 17332 17332 -
| # # # - - Missing -
S,
1 18 17332

(18 unique values)

16

count command can be used to show the number of observations that satisfying if options. If no
conditions are specified, count displays the number of observations in the data.

. count
17332

. count if hhz_usu>8
1235

17

Chapter 6. Generate and Organize Variables

Create variables

The generate command is used to create a new variable.

. gen urbanrural="RURAL”

For existing variables, the replace command is needed to replace existing value of a variable
with a new value.

. replace urbanrural="URBAN” if urban==2

egen stands for extended generate and is an extremely powerful command that has many options
for creating new variables. It adds summary statistics to each observation. Although egen and
generate commands look a like, they produce quite different results, as showed in the example
below.

nput hid 1id income
1000

250

0

600

500

20000

i
1
1
1
2
2

PNEFPWNPRP

3
end

generate hhincome=sum(income), by(hid)
egen hhincome=sum(income), by(hid)
bysort hid: gen hhincomel=sum(income)

list
e +
hid iid income hhincome hhinco~1
1.] 1 1 1000 1250 1000 |
2.] 1 2 250 1250 1250 |
3.1 1 3 0 1250 1250 |
4. | 2 1 600 1100 600 |
5.] 2 2 500 1100 1100 |
|- |
6. | 3 1 20000 20000 20000 |
e +

Here is a list of some of the options for egen command:

| count | number of non-missing values |
| diff || compares variables, 1 if different, 0 otherwise]
| Aill | fill with a pattern |

18

| group H creates a group id from a list of variables \
iqr	interquartile range	
ma	moving average	
max	maximum value	
mean		mean
median		median
min H minimum value \		
pctile		percentile
rank	rank	
rmean		mean across variables
sd	standard deviation	
std	standardize variables	
sum	sums	

Another approach to generate variables is to use recode command. The example makes a new
variable called grade going from 1 to 5 based on student scores (0-100).

- gen grade=totavg
. recode grade 0/60=0 60/70=1 70/80=2 80/90=3 90/100=4

Modify variables

We can use rename command to rename a variable.

. rename hhz_usu hhsize

The format command allows you to specify the display format for variables. The internal
precision of the variables is unaffected.

The syntax for format command is
. format varlist %fmt

where %fmt is listed below:

%Fmt description example

Right-justified formats

%t . #g general numeric format %9 .0g
Yot . #T fixed numeric format %9._2F
%t . #He exponential numeric format %10.7e
%d default numeric elapsed date format %d

%d. .. user-specified elapsed date format %dM/D/Y
%tts string format %15s

19

Right-justified, comma formats
%# . #gc general numeric format %9.0gc
Y%t . #fC fixed numeric format %9.2fc

Leading-zero formats

%0# . #F fixed numeric format %09 .2F
%0#s string format %015s
Left-justified formats

%—#.#g general numeric format %-9.0g
%-#_#F fixed numeric format %-9.2F
%-#_#e exponential numeric format %-10.7e
%-d default numeric elapsed date format %-d
%-d. .. user-specified elapsed date format %-dM/D/Y
%-#s string format %-15s
Left-justified, comma formats

%-#_#gc general numeric format %-9.0gc
Y%-#.#Fc Ffixed numeric format %-9.2fc

Centered formats
Y%o~#s string format (special) %~15s

An example for format command is to keep tot-exp in 2-digit decimal.

. format tot_exp %10.2f

Label variables

Now let’s include some variable labels so that we know a little more about the variables. The
variable urban may be confusing since it is hard to tell what the Os and 1s mean.

. use ethiopia.dta, clear
. codebook urban

type: numeric (double)

range: [0,1] units: 1
unique values: 2 missing .: 0/17332

tabulation: Freq. Value

8660 O
8672 1

We will use label command to add a brief definition for variable urban, and clearly indicate the
Os for rural households and 1s for urban households.

20

The label variable command makes labels that help explain individual variables.
label variable urban "the location of the household"
The label define command creates a definition for the values 0 and 1 called ul.

label define ul 1 urban O rural

The label value command connects the values defined for ul with the values in variables urban.

label values urban ul
. codebook urban
urban
the location of the household

type: numeric (double)

label: ul
range: [0,1] units: 1
unique values: 2 missing .: 0/17332
tabulation: Freq. Numeric Label
8660 0 rural
8672 1 wurban

Please notice the difference in codebook output.

In the student grading example, we the values of grade are labeled A-F by label define and label
values.

label define abcdf 0 “F” 1 “D” 2 “C” 3 “B” 4 “A”
label values grade abcdf

21

Chapter 7. Descriptive Statistics

Frequency table

The tabulate command is useful for obtaining frequency tables. Below we make a table for
regco.

. tabulate regco

Region | Freq Percent Cum
____________ gy,
1] 1,250 7.23 7.23
2] 785 4.54 11.77
31 3,327 19.24 31.00
4 | 3,725 21.54 52.54
5] 847 4.90 57.44
6 | 916 5.30 62.73
7 1 2,639 15.26 77.99
12 | 742 4.29 82.28
13 | 725 4.19 86.48
14 | 1,499 8.67 95.14
15 | 840 4.86 100.00
____________ S,
Total | 17,295 100.00

The tab1 command can be used as a shortcut to request one-way frequency tables for a series of
variables, instead of typing the tabulate command over and over again.

. tabl regco urban

We can also make crosstables using tabulate. Let’s look at the repair history broken down by
regco and urban/rural.

. tabulate regco urban

| Urban

Region | 0 1] Total
___________ S SO S
1] 564 688 | 1,252

2] 392 400 | 792

31 1,740 1,600 | 3,340

4] 1,824 1,904 | 3,728

5] 372 480 | 852

6 | 516 400 | 916

7 1 1,872 768 | 2,640

12 | 360 384 | 744

13 | 360 368 | 728

14 | 300 1,200 | 1,500

15 | 360 480 | 840
___________ S S
Total | 8,660 8,672 | 17,332

With the column option, we can request column percentages. Notice that about 21.96% of urban
households lives in regco 4.

. tabulate strata urban, column

o +
| Key |
e —— |
| frequency |
| column percentage |
o +

| Urban

Region | 0 1] Total

___________ U Sy,

1] 564 688 | 1,252

| 6.51 7.93 | 7.22

___________ S SO S

2] 392 400 | 792

| 4.53 4.61 | 4.57

___________ e

3] 1,740 1,600 | 3,340

| 20.09 18.45 | 19.27

___________ S SO SR P

4 | 1,824 1,904 | 3,728

| 21.06 21.96 | 21.51

___________ e

5] 372 480 | 852

| 4.30 5.54 | 4.92

___________ U Sy,

6 | 516 400 | 916

| 5.96 4.61 | 5.29

___________ S SRR

7 1 1,872 768 | 2,640

| 21.62 8.86 | 15.23

___________ e

12 | 360 384 | 744

| 4.16 4.43 | 4.29

___________ S SO SR P

13 | 360 368 | 728

| 4.16 4.24 | 4.20

___________ e

14 | 300 1,200 | 1,500

| 3.46 13.84 | 8.65

___________ RS Sy,

15 | 360 480 | 840

| 4.16 5.54 | 4.85

___________ U S

Total | 8,660 8,672 | 17,332

| 100.00 100.00 | 100.00

Since we are more interested in the percentages instead of the frequencies, nofreq option is used
to suppress the frequencies.

23

. tabulate regco urban, column nofreq

| Urban

Region | 0 1] Total
___________ U™ S,
1] 6.51 7.93 | 7.22

2] 4.53 4.61 | 4.57

31 20.09 18.45 | 19.27

4] 21.06 21.96 | 21.51

5] 4.30 5.54 | 4.92

6 | 5.96 4.61 | 5.29

7 21.62 8.86 | 15.23

12 | 4.16 4.43 | 4.29

13 | 4.16 4.24 | 4.20

14 | 3.46 13.84 | 8.65

15 | 4.16 5.54 | 4.85
___________ S S
Total | 100.00 100.00 | 100.00

We can use the plot option to make a plot to visually show the tabulated values.

. tabulate regco, plot

I
+
I
I
I
I
I
I
I
I
I
I
+
I

Suppose we want to focus on just the households with household income less than 1000. We can
combine if suffix and tabulate command to do it.

. tabulate regco urban if (tot_exp<1000), column nofreq

| Urban

Region | 0 1] Total
___________ U Sy,
1] 6.53 7.92 | 7.23

2] 4_46 4.62 | 4.54

3] 20.01 18.46 | 19.24

4] 21.10 21.97 | 21.54

5] 4.27 5.52 | 4.90

6 | 5.98 4.62 | 5.30

7 1 21.68 8.86 | 15.26

12 | 4.17 4.41 | 4.29

24

13 | 4.15 4.24 | 4.19

14 | 3.47 13.84 | 8.67

15 | 4.17 5.54 | 4.86
___________ e
Total | 100.00 100.00 | 100.00

Stata has two built-in variables called _nand _N. nis Stata notation for the current observation
number. Thus _n=1 in the first observation, and _n=2 in the second, and so on. _N is Stata
notation for the total number of observations. Let’s see how nand _N work.

. clear

input score group

score group

72
84
76
89
82
90
. 85
. en
. generate id=_n
. generate nt=_N

list

NOUOAWN R
PRNWRNR

|

|

1. | 72 1 1 7]
2. | 84 2 2 7
3. | 76 1 3 7]
a. | 89 3 4 7]
5. | 82 2 5 7]
| ---mmmm oo |

6. | 90 6 71
7. 85 17 7]
S +

As you can see, the variable id contains observation number running from 1 to 7 and nt is the
total number of observations, which is 7 for all observations.

Summary statistics

For summary statistics, summarize command is the mostly used. Let’s generate some summary
statistics on tot_exp.

. summarize tot_exp
Variable | Obs Mean Std. Dev. Min Max

_____________ o
tot_exp | 17295 17.25426 18.50382 .6677808 602.4645

25

To get these values separately for urban and rural households, we could use the by urban: prefix
as shown below. Note that we first have to sort the data by urban before using the prefix.

. sort urban
- by urban: summarize tot_exp

Variable | Obs Mean Std. Dev. Min Max
_____________ e

tot_exp | 8634 13.14905 11.58237 .6677808 561.1172

Variable | Obs Mean Std. Dev. Min Max
_____________ e

tot_exp | 8661 21.34667 22.72598 -9592329 602.4645

Suppose we do the summarization for each regco, this is not the most efficient way to do it with
long output. Another concise way, which does not require the data to be sorted, is by using the
summarize() option as part of the tabulate command.

. tabulate regco, summarize(tot_exp)

Summary of Total daily expenditures

I

Region | Mean Std. Dev. Freg.
____________ e
1] 16.034104 14.349284 1250

2] 16.21084 28.405333 785

3] 15.666401 16.380004 3327

4 | 16.16371 13.136783 3725

5] 18.827462 13.250171 847

6 | 15.674472 16.408756 916

7 1 14.505694 13.335531 2639

12 | 15.203531 12.665174 742

13 | 19.667951 11.867981 725

14 | 29.266701 36.231542 1499

15 | 18.233438 14.683283 840
____________ e
Total | 17.254261 18.503822 17295

We can use if and by with most Stata commands. Here, we get summary statistics for tot_exp for
households in regco 1.

. summarize tot _exp if regco==1 & urban==0
Variable | Obs Mean Std. Dev. Min Max

_____________ S
tot_exp | 564 12.20058 8.074085 1.720451 134.4393

26

ATTENTION!

Missing values are represented as . and are the highest value possible. Most commands ignore
missing values by default. Some commands, such as tabulate, have an option to display missing
if you want to see how many missing observations there are. Therefore, when values are missing,
be careful with commands like summarize and tabulate. To avoid this problem, use missing
option to treat missing values like other values in tabulate command.

. tabulate regco urban, column nofreq missing

In summarize command, use !'missing() option to omit missing values.

- summarize tot_exp if hhz_usu~=.

Other commands, however, may use missing values in a way that will surprise you. For example,
the replace command does not ignore missing values. Here is a simple example to demonstrate
how replace commands handle missing values differently. In this example, we have variable
income with one missing value. We want to generate an index variable at cutting value of 500.

Clear

input hid income

1 1000

2 450

3.

4 700

5 500

end

- gen cutl=0 if income<=500
(3 missing values generated)
. replace cutl=1 if income>500
(3 real changes made)

- gen cut2=0 if income<=500

(3 missing values generated)

. replace cut2=1 if income>500 & income<.
(2 real changes made)

. recode income (min/500 = 0) (601/max =1), generate(cut3)
(4 differences between income and cut3)

1.1 1 1000 1 1 1]
2.1 2 450 0 0 0|
3.1 3] 1] -
4.1 4 700 1 1 1]
5.] 5 500 0 0 0|

gy +

27

The first replace command changes every income value that's greater than 500 to 1. This
command does not ignore missing values, so both income greater than 500 and missing values
are changed to 1. This probably is not what we would normally want to do, since missing values
should remain missing.

The second replace command changes all income values greater than 500 but not missing to 1.
In this case no-missing values greater than 500 are changed and missing values are not changed,
which is our intention.

The recode command automatically ignores missing values, so we don't have to think about it.
The results are the same as the second replace command.

28

Advanced statistics

The table command calculates and displays tables of statistics, including frequency, mean,
standard deviation, sum, and 1% to 99" percentile. The row and col option specifies an additional
row and column to be added to the table, reflecting the total across rows and columns.

The example lists a two-way table of median of tot_exp (50" percentile) by urban and femhead.

. table urban femhead [pweight=samplewt], contents(p50 tot_exp) row col

missing
| Female headed household
Urban | 0 1 Total
__________ S
0 | 11.713764 7.9488297 10.741507
1| 17.312714 11.005945 14.391151
I
Total | 12.156257 8.5248489 11.194192

The tabstat command displays summary statistics for a series of numeric variables in a single
table.

. tabstat tot_exp exp_food hhz_usu agehhh, statistics(mean) by(urban) missing

Summary statistics: mean
by categories of: urban (Urban)

tot_exp exp_food hhz_usu agehhh

I
+
0 | 13.14905 8.037849 4.953903 43.65682
1] 21.34667 9.699733 4.550745 43.50572
+
I

Sometimes we have data files that need to be aggregated at a higher level to be useful for us. For
example, we have household data but we really interested in regional data. The collapse
command serves this purpose by converting the dataset in memory into a dataset of means, sums,
medians and percentiles. Note that the collapse command creates a new dataset and all
household information disappear and only the specified variable aggregation remain at the region
level. The resulting summary table can by viewed by edit command.

We would like to see the mean tot_exp in each regco and urban/rural areas.

. collapse (mean) tot_exp [pweight=samplewt], by(regco urban)
. edit

regco urban tot_exp
1 0 12.067

29

14.899
13.022
17.849
11.612
16.507
13.324
17.790
15.152
22.627
11.890
18.261
12.313
18.591
10.851
19.714
19.528
20.021
21.568
30.597
16.627
19.574

NNOOOORrPAWWNNE

RPOROROROROROROROROROR

However, this table is not easy to interpret, and we can call it a long format since the data of
urban and rural are vertically listed. We will use reshape command to convert it into a wide
form where the rural and urban are horizontally arranged in a twoway table. The reshape wide
command tells system that we want to go from long to wide. The i() option records row variable
while j() column variable.

. reshape wide tot_exp, i(regco) j(urban)
(note: j =0 1)

Data long -> wide
Number of obs. 22 -> 11
Number of variables 3 -> 3
J variable (2 values) urban -> (dropped)

Xij variables:
tot_exp -> tot_exp0 tot_expl

The converted table is two-way table.

regco tot_expO tot_expl

1 12.067 14.899
2 13.022 17.849
3 11.612 16.507
4 13.324 17.790
5 15.152 22.627
6 11.890 18.261
7 12.313 18.591
12 10.851 19.714
13 19.528 20.021
14 21.568 30.597
15 16.627 19.574

30

If needed, the table can be converted back into the long form by reshape long.

. reshape long tot _exp, i(regco)

The collapse and reshape commands are examples of the power and simplicity of Stata in its
ability to shape data files.

31

Chapter 8. Normality and Outlier

Check for normality

An outlier is an observation that lies an abnormal distance from other values in a random sample
from a population. We must be extremely mindful of possible outliers and their adverse effects
during any attempt to measure the relationship between two continuous variables.

There are no official rules to identify outliers. In a sense, this definition leaves it up to the analyst
(or a consensus process) to decide what will be considered abnormal. Sometimes it is obvious
when an outlier is simply miscoded (for example, age reported as 230) and hence should be set to
missing. But most times it is not the case.

Before abnormal observations can be singled out, it is necessary to characterize normal
observations.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or
data set, is symmetric if it looks the same to the left and right of the center point. If the
coefficient of skewness is 0, the distribution is symmetric. If the coefficient is negative, the
median is usually greater than the mean and the distribution is said to skewed left (the left tail is
longer than the right tail). If the coefficient is positive, the median is usually less than the mean
and the distribution is said to be skewed right (the right tail is longer than the left tail). The
skewness for a normal distribution is zero and any symmetric data should have a skewness near
zero. A value greater than 1 on skewness coefficient indicates a serious asymmetry.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. The
smaller the coefficient of kurtosis is, the flatter the distribution. That is, data sets with high
kurtosis tend to have a distinct peak near the mean, and low kurtosis data tend to have a flat top
near the mean rather than a sharp peak. A uniform distribution would be the extreme case. The
standard normal distribution has a kurtosis coefficient of 3. A value of 6 or larger on kurtosis
coefficient indicates a large departure from normality.

We can obtain skewness and kurtosis values by using detail option in summarize command.
Clearly, variable tot_exp_pc is skewed to the right and has a peaked distribution. But both
statistics indicate the distribution of tot_exp_pc is far from normal. Remember that missing
values are represented as . and are the highest value possible. Those observations need to be
dropped first.

. cd "u:\notes"

. use ethiopia.dta, clear

. drop if tot _exp pc==.

(37 observations deleted)

. sum tot_exp_pc

32

Variable | Obs Mean Std. Dev. Min Max
_____________ e

tot_exp_pc | 17295 4.123542 4.136962 -4008128 122.3926

. summarize tot_exp_pc, detail

Total daily expenditures per capita

Percentiles Smallest

1% .9142123 .4008128

5% 1.265692 .4301129
10% 1.540479 .4934749 Obs 17295
25% 2.101912 .5245371 Sum of Wgt. 17295
50% 3.000105 Mean 4.123542
Largest Std. Dev. 4.136962

75% 4.630802 69.40652
90% 7.554192 86.06636 Variance 17.11445
95% 10.25375 112.2234 Skewness 6.894294
99% 20.71157 122.3926 Kurtosis 108.0724

Besides commands for descriptive statistics, such as summarize, we can also check normality of
a variable visually by looking at some basic graphs in Stata, including histograms, boxplots,
kdensity, pnorm, and gnorm. Let’s keep using tot_exp_pc from ethiopia.dta file for making
some graphs.

The histogram command is an effective graphical technique for showing both the skewness and
kurtosis of tot_exp_pc.

- histogram tot_exp_pc

T T T
0 50 100 150
Total daily expenditures per capita

The normal option can be used to get a normal overlay. This shows the skew to the left in
tot_exp_pc.

33

. histogram tot_exp_pc, normal

O~ T T T
0 50 100 150
Total daily expenditures per capita

We can use the bin() option to increase the number of bins to 100. This better illustrates the
distribution of tot_exp_pc. This option specifies how to aggregate data into bins. Notice that the
histogram resembles a bell shape curve, but truncated at 0.

. histogram tot_exp_pc, normal bin(100)

O - T T T
0 50 100 150
Total daily expenditures per capita

graph box draws vertical box plots. In a vertical box plot, the y axis is numerical, and the x axis
is categorical. The upper and lower bounds of box are defined by the 25" and 75™ percentiles of
tot_exp_pc, and the line within the box is the median. The ends of the whiskers are 5™ and 95™
percentile of tot_exp_pc. graph box command can be used to produce a boxplot which can help
us examine the distribution of tot_exp_pc. If tot_exp_pc is normal, the median would be in the
center of the box and the end of whiskers would be equidistant from the box.

. graph box tot_exp_pc, by(urban)

34

The boxplot for tot_exp_pc shows positive skew. The median is pulled to the low end of the box,
and the 95™ percentile is stretched out away from the box, in both rural and urban cases.

100 150
1 1

Total daily expenditures per capita
50
1

Graphs by Urban

The kdensity command with the normal option displays a density graph of the residual with a
normal distribution superimposed on the graph. This is particularly useful in verifying that the
residuals are normally distributed, which is a very important assumption for regression. The plot
shows that tot_exp_pc is more skewed to the right and has a higher mean than that of normal
distribution.

. kdensity tot _exp_pc, normal

T T T
0 50 100 150
Total daily expenditures per capita

Kernel density estimate
Normal density

Graphical alternatives to the kdensity command are the P-P plot and Q-Q plot.

35

pnorm command produces a P-P plot, which graphs a standardized normal probability. It should
be approximately linear if the variable follows normal distribution. The straighter the line formed
by the P-P plot, the more the variable's distribution conforms to the normal distribution.

. pnorm tot_exp_pc

00
L

1

050 0.75
L L

Normal F[(tot_exp_pc-m)/s]

0.25
L

0.00
L

T T T T T
0.00 0.25 0.50
Empirical P[i] = i/(N+1)

Qnorm command plots the quantiles of a variable against the quantiles of a normal distribution.
If the Q-Q plot shows a line that is close to the 45 degree line, the variable is more normally
distributed.

- gnorm tot_exp_pc

00 150

1

Total daily expenditures per capita
50
[]

0
°

T T T T
-10 0 10 20
Inverse Normal

Both P-P and Q-Q plot prove that tot_exp_pc is not normal, with a long tail to the right. The
gnorm plot is more sensitive to deiances from normality in the tails of the distribution, where the
pnorm plot is more sensitive to deviances near the mean of the distribution.

From the statistics and graphs we can confidently conclude that there exists outlier, especially at
the upper end of the distribution.

36

Deal with outliers

There are generally three ways to deal with outliers. The easiest is to delete them from analyses.
The second one is to use measures that are not sensitive to them, such as median instead of mean,
or transform the data to be more normal. The most complicated one is to replace them by
imputation.

Since our data is heavily left-tailed, we will focus on very large outliers. A customary criterion to
identify outlier is to three times of deviation from the median. Note that we are using the
median because it is a robust statistic and if there are big outliers the mean will shift a lot but not
the median.

/* Calculate number of standard deviations from median by urban or rural */
. use ethiopia.dta, clear

. egen median=median(tot_exp_pc), by (urban)

. egen sd=sd(tot_exp_pc), by (urban)

. gen ratio=(tot_exp_pc-median)/sd

(37 missing values generated)

- gen outlier=1 if ratio>3 & ratio~=.

(17044 missing values generated)

. replace outlier=0 if outlier==. & ratio~=.

(17007 real changes made)

. tabulate outlier, missing

outlier | Freq. Percent Cum.

____________ e

0 | 17,007 98.12 98.12

1] 288 1.66 99.79

- 37 0.21 100.00

____________ e
Total | 17,332 100.00

There are 288 observations are identified as outliers. When we compare the mean and median
values from using table command, the mean value has dropped around 10% among urban
households, while the medians are less sensitive to outliers.

. table urban outlier, contents(mean tot_exp_pc) row col missing

| outlier
Urban | 0 1 Total
__________ A e
0 | 2.7359721 15.140992 2.8739015
1] 4.8367138 28.860726 5.3692863
I
Total | 3.7820815 24.287481 4.1235417

+

| 2.453216 11.575683 2.4679672
| 38607807 25.327541 3.9278767
I
I

Method 1. Listwise deletion

In this approach, any observation that contains a missing value for a relevant variable is dropped.
Although easy to understand and to perform, it runs the risk of causing bias. Stata perform
listwise deletion automatically by default in order to allow the data matrix to be inverted, a
necessity for regression analysis.

Sometimes by dropping outliers we can greatly improve decrease the adverse effect of extreme
values. But it does not work in our data, as indicated by the histogram below.

- histogram tot_exp_pc if outlier==0, normal

O T T T T
0 5 10 15 20
Total daily expenditures per capita

Method 2. Robust statistics

An alternative is to choose robust statistics that’s not sensitive to outliers, such as median over
mean, which is indicated above.

When we are concerned about outliers or skewed distributions, the rreg command is used for

robust regression. Robust regression will result regression coefficients and standard errors from
OLS, which is different from regress command with robust option.

. regress tot _exp hhz_usu

38

Source | SS df MS Number of obs = 17295
———————————— - FC 1, 17293) = 2195.97
Model | 667200.753 1 667200.753 Prob > F = 0.0000
Residual | 5254116.66 17293 303.829102 R-squared = 0.1127
———————————— o Adj R-squared = 0.1126
Total | 5921317.41 17294 342.391431 Root MSE = 17.431
tot_exp | Coef. Std. Err. t P>|t] [95% Conf. Interval]
____________ S
hhz_usu | 2.601727 -0555198 46.86 0.000 2.492902 2.710551
_cons | 4.890831 .2952526 16.56 0.000 4.312106 5.469556
. rreg tot_exp hhz_usu
Huber iteration 1: maximum difference in weights = .98454914
Huber iteration 2: maximum difference in weights = .45888146
Huber iteration 3: maximum difference in weights = 18837666
Huber iteration 4: maximum difference in weights = 06859455
Huber iteration 5: maximum difference in weights = 02145807
Biweight iteration 6: maximum difference in weights = .29397076
Biweight iteration 7: maximum difference in weights = .11984779
Biweight iteration 8: maximum difference in weights = .0403922
Biweight iteration 9: maximum difference in weights = .0104878
Biweight iteration 10: maximum difference in weights = .00301886
Robust regression Number of obs = 17295
FC 1, 17293) = 5562.66
Prob > F = 0.0000
tot_exp | Coef. Std. Err. t P>|t] [95% Conf. Interval]
____________ e
hhz_usu | 1.589587 .0213129 74.58 0.000 1.547812 1.631363
_cons | 5.948286 -1133414 52.48 0.000 5.726125 6.170447

Method 3. Data transformation

Variable tot_exp_pc is still skewed to the right and bounded below zero. In this case, a log
transformation would be appropriate correct our dataset. The logarithm function tends to squeeze
together the larger values in your data set and stretches out the smaller values, which can
sometimes produce a dataset that’s closer to symmetric. In addition, a log transformation can
help to pull in the outliers on the high end and make them closer to the rest of the data.

Let’s have a look at the distribution after the log transformation.

- histogram logexp if tot_exp_pc~=., normal

39

© |

Density
4
L

~

Statistics from summarize command also indicates an almost perfect normal distribution.

. sum logexp if outlier==0, detail

logexp

Percentiles Smallest

1% -.0896924 -.9142609

5% .2356188 -.8437076
10% .4320935 -.7062833 Obs 17295
25% . 7428475 -.6452391 Sum of Wgt. 17295
50% 1.098647 Mean 1.173457
Largest Std. Dev. .6424152

75% 1.53273 4.239981
90% 2.022103 4.455119 Variance .4126973
95% 2.327643 4.720492 Skewness .6641258
99% 3.030693 4.807234 Kurtosis 3.940968

Method 4. Imputation

After identifying outliers, usually we first denoted them as missing values. Missing data usually
present a problem in statistical analyses. If missing values are correlated with the outcome of
interest, then ignoring them will bias the results of statistical tests. In addition, most statistical
software packages (e.g., SAS, Stata) automatically drop observations that have missing values
for any variables used in an analysis. This practice reduces the analytic sample size, lowering the
power of any test carried out.

Other than simply dropping missing values, there is more than one approach of imputation to fill

in the cell of missing value. We will only focus on single imputation, referring to fill a missing
value with one single replacement value.

40

The easy approach is to use arbitrary methods to impute missing data, such as mean substitution.
Substitution of the simple grand mean will reduce the variance of the variable. Reduced variance
can bias correlation downward (attenuation) or, if the same cases are missing for two variables
and means are substituted, correlation can be inflated. These effects on correlation carry over in a
regression context to lack of reliability of the beta weights and of the related estimates of the
relative importance of independent variables. That is, mean substitution in the case of one
variable can lead to bias in estimates of the effects of other or all variables in the regression
analysis, because bias in one correlation can affect the beta weights of all variables. Mean
substitution is no longer recommended.

Another approach is regression-based imputation. In this strategy, it is assumed that the same
model explains the data for the non-missing cases as for the missing cases. First the analyst
estimates a regression model in which the dependent variable has missing values for some
observations, using all non-missing data. In the second step, the estimated regression coefficients
are used to predict (impute) missing values of that variable. The proper regression model
depends on the form of the dependent variable. A probit or logit is used for binary variables,
Poisson or other count models for integer-valued variables, and OLS or related models for
continuous variables. Even though this may introduce unrealistically low levels of noise in the
data, it is a performs more robustly than mean substitution and less complex than multiple
imputation. Thus it is the preferred approach in imputation.

Assuming we already coded outliers of tot_exp_pc as missing ., now the missing values are
replaced (imputed) with predicted values.

. Xi: regress logexp i.regco i.urban hhz_usu i.femhead agehhh, robust
. predict yhat
(option xb assumed; fitted values)

. replace logexp=yhat if tot _exp pc==.
(325 real changes made)

There is another Stata command to perform imputation. The impute command fills in missing
values by regression and put newly created variable into a new variable defined by generate
option.

. Xi: impute logexp i.regco i.urban hhz_usu i.femhead agehhh, generate(newl)

i.regco _lIregco_1-15 (naturally coded; _lregco_1 omitted)
i.urban _lurban_0-1 (naturally coded; _lurban_0O omitted)
i . femhead _Ifemhead_0-1 (naturally coded; _Ifemhead O omitted)

0.21% (37) observations imputed

. Xi: regress logexp i.regco i.urban hhz_usu i.femhead agehhh
. predict yhat

. replace logexp=yhat if tot _exp pc==.

. compare logexp newl

—————————— difference -————----—-
count minimum average max imum

logexp=newl 17332

41

jJjointly defined 17332

total 17332

The impute command produces exactly the same results.

42

Chapter 9. Graphing Data

Graph commands to produce histogram, box plot, kdensity, P-P plot, Q-Q plot will be
postponed until the introduction of normality later. But first we will get ourselves acquainted

with some twoway graph commands.

A two way scatterplot can be drawn using (graph) twoway scatter command to show the
relationship between two variables, tot_exp and exp_food. As we would expect, there is a
positive relationship between the two variables.

. graph twoway scatter tot_exp exp_food

400 600
1 1
L]

Total daily expenditures
200
1

0
Total food expenditures

We can show the regression line predicting tot_exp from exp_food using Ifit option.

. twoway Ifit tot_exp exp_food

Fitted values

T T T T
0 20 40 60
Total food expenditures

The two graphs can be overlapped like this

43

. twoway (scatter tot_exp hhz_usu) (Ifit tot _exp hhz_usu)

T T T T T
5 10 15 20
Number of usual household members

® Total daily expenditures Fitted values

44

Chapter 10. Statistical Tests

compare command

The compare command is an easy way to check if two variables are the same. Let’s first create
one variable compare, which equals tot_exp if tot_exp not missing, and equals O if tot_exp is
missing.

. gen compareexp=tot_exp if tot exp~=.
(37 missing values generated)

. replace compareexp=0 if tot_exp==.
(37 real changes made)

. compare tot_exp compareexp

—————————— difference - —————-—-——-

count minimum average max imum
tot_exp=compareexp 17295

jJjointly defined 17295 0 0 0
tot_exp missing only 37
total 17332

correlate command

The correlate command displays a matrix of Pearson correlations for the variable listed.

. correlate tot_exp hhz_usu
(obs=17295)

| tot_exp hhz_usu
_____________ S,

tot_exp | 1.0000
hhz_usu | 0.3357 1.0000

ttest command

We would like to see if the mean of hhz_usu equals to 4 by using single sample t-test, testing
whether the sample was drawn from a population with a mean of 4. ttest command is used for
this purpose.

. ttest hhz_usu=4

One-sample t test

45

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf.Interval]

_________ e
hhz_usu | 17332 4.746596 .0181585 2.390587 4.711003 4.782188
mean = mean(hhz_usu) t = 41.1155
Ho: mean = 4 degrees of freedom = 17331
Ha: mean < 4 Ha: mean 1= 4 Ha: mean > 4
Pr(T < t) = 1.0000 Pr(JT] > 1t]) = 0.0000 Pr(T > t) = 0.0000
We are also interested that if exp_food is close to tot_exp.
. ttest tot_exp=exp_food
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
_________ e e e
tot_exp | 17295 17.25426 -1407023 18.50382 16.97847 17.53005
exp_Ffood | 17295 8.870088 .0405354 5.330828 8.790635 8.949542
_________ e e
diff | 17295 8.384172 .1171933 15.41215 8.154462 8.613883
mean(diff) = mean(tot_exp - exp_food) t = 71.5414
Ho: mean(diff) = 0 degrees of freedom = 17294
Ha: mean(diff) < O Ha: mean(diff) 1= 0 Ha: mean(diff) > O
Pr(T < t) = 1.0000 Pr(JT] > 1t]) = 0.0000 Pr(T > t) = 0.0000

The t-test for independent groups comes in two varieties: pooled variance and unequal variance.
We want to look at the differences in tot_exp between rural and urban households. We will begin
with the ttest command for independent groups with pooled variance and compare the results to
the ttest command for independent groups using unequal variance.

. ttest tot_exp, by(urban)

Two-sample t test with equal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
________ e e e
0 | 8634 13.14905 -1246497 11.58237 12.90471 13.3934
1] 8661 21.34667 .244196 22.72598 20.86799 21.82535
________ e
combined] 17295 17.25426 -1407023 18.50382 16.97847 17.53005
________ e
diff] -8.197619 .2744217 -8.735513 -7.659724
diff = mean(0) - mean(l) t = -29.8723
Ho: diff = 0 degrees of freedom = 17293
Ha: diff < O Ha: diff =0 Ha: diff > 0O
Pr(T < t) = 0.0000 Pr(IT] > 1t]) = 0.0000 Pr(T > t) = 1.0000

46

. ttest tot_exp, by(urban) unequal

Two-sample t test with unequal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
________ e
0 | 8634 13.14905 -1246497 11.58237 12.90471 13.3934
1] 8661 21.34667 .244196 22.72598 20.86799 21.82535
________ e
combined] 17295 17.25426 -1407023 18.50382 16.97847 17.53005
________ e
diff| -8.197619 .2741701 -8.735033 -7.660205
diff = mean(0) - mean(l) t = -29.8998
Ho: diff = 0 Satterthwaite®s degrees of freedom = 12883.4
Ha: diff < O Ha: diff 1= 0 Ha: diff > 0O
Pr(T < t) = 0.0000 Pr(IT] > |t]) = 0.0000 Pr(T > t) = 1.0000

The by() option can be extended to group mean comparison test.

. ttest tot_exp, by(regco)
. ttest tot_exp, by(regco) unequal

Other statistical test

The hotelling command performs Hotelling's T-squared test of whether the means are equal
between two groups.

. hotel tot_exp, by(urban)

Variable | Obs Mean Std. Dev. Min Max
_____________ e

tot_exp | 8634 13.14905 11.58237 .6677808 561.1172

-> urban = 1

Variable | Obs Mean Std. Dev. Min Max
_____________ N P

tot_exp | 8661 21.34667 22.72598 -9592329 602.4645

2-group Hotelling"s T-squared = 892.35653
F test statistic: ((17295-1-1)/(17295-2)(1)) x 892.35653 = 892.35653

HO: Vectors of means are equal for the two groups
F(1,17293) 892.3565
Prob > F(1,17293) 0.0000

The tabulate command performs a chi-square test to see if two variables are independent.

47

. tabulate urban femhead, chi2

Female headed

|

| household
Urban | 0 1]
----------- Fo e+
0] 6,621 2,013 |
1] 5,116 3,545 |
——————————— Ny
Total | 11,737 5,558 |

Pearson chi2(1) = 615.2195

48

Chapter 11. Data Management

Subset data

We can subset data by keeping or dropping variables, or by keeping and dropping observations.
1. keep and drop variables

Suppose our data file have many variables, but we only care about just a handful of them. We
can subset our data file to keep just those variables to our intereste. The keep command is used
to keep variables in the list while dropping other variables.

. keep hhid exp_food tot_exp

Instead of wanting to keep just a handful of variables, it is possible that we might want to get rid
of just one or two variables in the data file. The drop command is used to drop variables in the
list while keeping other variables.

. drop tot_exp
2. keep and drop observations

The keep if command is used to keep observations if condition is met.

- keep if urban==0
(8660 observations deleted)

We want to focus on rural households in the data set, which means 8660 urban households are
dropped from the data set.

Similar concepts can be found in drop if command. We eliminate the observations with missing

values with drop if command. The portion after the drop if specifies which observations that
should be dropped.

- drop if missing(tot_exp)
(37 observations deleted)

3. Use use command to drop variables and observations

You can eliminate both variables and observations with the use command. Let’s read in just
hhid, tot_exp, regco, urban, hhz_usu from ethiopia.dta file.

- use hhid tot_exp regco urban hhz_usu using ethiopia.dta

We can also limited read in data for urban households.

49

. use hhid tot_exp regco urban hhz_usu using ethiopia.dta if urban==1

Organize data

The sort command arranges the observations of the current data into ascending order based on
the values of the variables listed. There is no limit to the number of variables in the variable list.
Missing numeric values are interpreted as being larger than any other number, so they are placed
last. When you sort on a string variable, however, null strings are placed first.

sort hhid regco urban
Variable ordering

The order command helps us to organize variables in a way that makes sense by changing the
order of the variables. While there are several possible orderings that are logical, we usually put
the id variable first, followed by the demographic variables, such as region, zone, gender,
urban/rural. We will put the variables regarding the household total expenditure as follows.

. order hhid regco zone urban hhz_usu tot _exp

Using _nand _N in conjunction with the by command can produce some very useful results.
When used with by command, _N is the total number of observations within each group listed in
by command, and _n is the running counter to uniquely identify observations within the group.
To use the by command we must first sort our data on the by variable.

. sort group

- by group: generate nl=_n

. by group: generate n2=_N
list

|

|

1. | 72 1 1 7 1 4]
2. | 85 17 7 2 4]
3. | 76 1 3 7 3 4]
4. | 90 1 6 7 4 4]
5. | 84 2 2 7 1 2]
| - |

6. | 82 2 5 7 2 2]
7. 89 3 4 7 1 1]
gy +

Now nl is the observation number within each group and n2 is the total number of observations
for each group. This is very useful in programming, especially in identifying duplicate
observations.

To use _n to find out duplicated observations, we can type:

50

. sort group
. list if id == id[_n+1]

To use _N to identify duplicated observations, use:

. sort group score
. by group score: generate ngroup=_N
. list if ngroup>1

If there are a lot of variables in the data set, it could take a long time to type them all out twice.
We can make use of the “*” and *“?” wildcards to indicates that we wish to use all the variables.

Further we can combine sort and by commands into a single statement. Below is a simplified
version of the code and will yield the same results as above.

. bysort *:generate nn=_N
- List if nn>1

Create one data set from two or more data sets

Appending data files

We can create a new data by append command, which concatenates two datasets, that is, stick
them together vertically, one after another.

Supposing we are given one file with data for the rural households (called rural.dta) and a file for
the urban households (called urban.dta). We need to combine these files together to be able to
analyze them.

. use rural.dta, clear
. append using urban.dta

The append command does not require that the two datasets contain the same variables, even
though this is typically the case. But it highly recommended to use the identical list of variables
for append command to avoid missing values from one dataset.

One-to-one match merging

Another way of combining data files is match merging. The merge command sticks two datasets
horizontally, one next to the other. Before any merge, both datasets must be sorted by identical
merge variable.

Assuming we are working on our household expenditure data, and we have been given two files.
One file has all the demographic information (called hhinfo.dta) and the other file with total
expenditure by household (called hhexp.dta). Both data sets have been cleaned and sorted by
hhid. We would like to merge the two households together by hhid.

51

. use hhinfo.dta, clear
. list

. sort hhid

. save hl.dta, replace

. use hhexp.dta, clear
- list

. sort hhid

. save h2.dta, replace

. use hl.dta, clear
- merge hhid using h2.dta

After merge command, a _merge variable appears. The _merge variable indicates, for each
observation, how the merge go. This is especially useful in identifying mismatched records.
_merge can have one of three values in merging file A using file B:

_merge==1 the records contains information from master data file A

_merge==2 the records contains information from using data file B

_merge==3 the records contains information from both files

When there are many records, tabulating _merge is very useful to summarize how many
mismatched observations you have. In this case, all of the records match so the value for _merge
is always 3.

. tab _merge

_merge | Freq. Percent Cum.

____________ F e

2] 8,660 49_.97 49_.97

31 8,672 50.03 100.00

____________ e
Total | 17,332 100.00

One-to-many match merging

Another kind of merge is called a one to many merge. Say, we have one data file household.dta
contains household information, and another data file individual.dta contains information of each
individual in the household. If we merge households.dta with individual.dta, there can be
multiple individuals per household and hence it is a one to many merge.

The strategy for the one to many merge is really the same as the one to one match merge.

. use household.dta, clear
. list

. sort hhid

. save hl.dta, replace

. use individual.dta, clear

. list
. sort hhid

52

. save h2.dta, replace

. use hl.dta, clear
- merge hhid using h2.dta

There is no difference in the order of files to be merged and the results are the same. The only
difference is the order of the records after the merge.

Label data

Besides giving labels to variables, we can also label the data set itself so that we will remember
what the data are. The label data command places a label on the whole dataset.

label data “relabeled household”

We can also add some notes to the data set. The note: (note the colon, “:””) command allows you
to place notes into the dataset.

. notes hhsize: the variable hhz_usu was renamed to hhsize

The notes command display all notes in the data set.

. notes
hhsize:
the variable hhz_usu was renamed to hhsize

53

Chapter 12. Linear Regression

Regression commands

This is an example of ordinary linear regression by using regress command.

. regress tot _exp hhz_usu

Source | SS df MS
____________ e
Model | 667200.753 1 667200.753
Residual | 5254116.66 17293 303.829102
____________ M
Total | 5921317.41 17294 342.391431
tot_exp | Coef Std. Err t
____________ e
hhz_usu | 2.601727 .0555198 46.86
cons | 4.890831 .2952526 16.56

Number of obs = 17295
F(C 1, 17293) = 2195.97
Prob > F = 0.0000
R-squared = 0.1127
AdjJ R-squared = 0.1126
Root MSE = 17.431
P>]t] [95% Conf. Interval]
0.000 2.492902 2.710551
0.000 4.312106 5.469556

This regression tells us that for every extra person (hhz_usu) added to a household, total daily
expenditure (tot_exp) will increase by 2.6 Ethiopia Birr. This increase is statistically significant
as indicated by the 0.000 probability associated with this coefficient.

The other important piece of information is the r-squared (r2) which equals to 0.1127. In essence,
this value tells us that by our independent variable (hhz_usu) accounts for approximately 11% of

the variation of dependent variable (tot_exp).

We can run the regression with robust standard errors, which can tolerate a non-zero percentage
of outliers, i.e., when the residuals are not iid. This is very useful when there is heterogeneity of
variance. The robust option does not affect the estimates of the regression coefficients.

. regress tot_exp hhz_usu, robust

Linear regression

| Robust
tot_exp | Coef Std. Err t
____________ e
hhz_usu | 2.601727 .0707735 36.76
_cons | 4.890831 .2804312 17.44

Number of obs = 17295
FC 1, 17293) = 1351.39
Prob > F = 0.0000
R-squared = 0.1127
Root MSE = 17.431
P>|t] [95% Conf. Interval]
0.000 2.463003 2.74045
0.000 4.341157 5.440505

The regress command without any arguments redisplays the last regression analysis.

54

Extract results

Stata stores results from estimation commands in e(), and you can see a list of what exactly is
stored using the ereturn list command.

. ereturn list

scalars:
e(N) = 17295
e(dfm) = 1
e(df_r) = 17293
e(F) = 2195.973818320767
e(r2) = .112677755062528
e(rmse) = 17.43069424443639
e(mss) = 667200.7528912034
e(rss) = 5254116.658171482
e(r2_a) = .1126264439976499
e(1l) = -73972.67623316433
e(11_0) = -75006.45947850558
macros:
e(title) : "Linear regression”
e(depvar) : "tot_exp"
e(cmd) : "regress”
e(properties) : "b V"
e(predict) : "regres_p"
e(model) : "ols"
e(estat_cmd) : "regress_estat"
matrices:
e(b) : 1x2
e(V) : 2x2
functions:
e(sample)

Using the generate command, we can extract those results, such as estimated coefficients and
standard errors, to be used in other Stata commands.

. regress tot_exp hhz_usu
- gen intercept=_b[cons]

. display intercept
4.890831

- gen slope=_b[hhz_usu]
. display slope
2.6017268

The estimates table command displays a table with coefficients and statistics for one or more

estimation sets in parallel columns. In addition, standard errors, t statistics, p-values, and scalar
statistics may be listed by b, se, t, p options.

55

. estimates table, b se t p

Variable | active
_____________ R,
hhz_usu | 2.6017268
-05551983
46 .86
0.0000
4.890831
.29525262
16.56
0.0000

I
0
o
>
n

Prediction commands

The predict command computes predicted value and residual for each observation. The default
shown below is to calculate the predicted tot_exp.

. predict pred
(option xb assumed; fitted values)

When using the resid option the predict command calculates the residual.

. predict e, residual

We can plot the predicted value and observed value using graph twoway command.

. regress tot_exp exp_food
- predict pred
. graph twoway (scatter tot _exp hhz_usu) (line pred hhz_usu)

5 10 l
Number of usual household members

® Total daily expenditures Fitted values

56

The rvfplot command is a convenience command that generates a plot of the residual versus the
fitted values. It is used after regress command.

. regress tot_exp exp_food
. rvfplot

600
1

400
1

200
1
[]
S
°
°
]

Residuals

=3
S
o

T T
0 50 100 150
Fitted values

The rvpplot command is another convenience command which produces a plot of the residual
versus a specified predictor and it is also used after regress. In this example, it produces the same
graph as above.

. regress tot_exp exp_food
. rvpplot exp_food

Hypothesis tests

The test command performs Wald tests for simple and composite linear hypotheses about the
parameters of estimation.

. gen regcol=0

. replace regcol=1 if regco==1
(1252 real changes made)

- gen regco2=0

. replace regco2=1 if regco==
(792 real changes made)

- gen regco3=0

. replace regco3=1 if regco==3
(3340 real changes made)

. gen regco4=0

. replace regco4=1 if regco==
(3728 real changes made)

. regress tot_exp hhz_usu regcol regco2 regco3 regco4

57

Source | SS df MS Number of obs = 17295
———————————— - F(C 5, 17289) = 453.41
Model | 686427.054 5 137285.411 Prob > F = 0.0000
Residual | 5234890.36 17289 302.787342 R-squared = 0.1159
———————————— o Adj R-squared = 0.1157
Total | 5921317.41 17294 342.391431 Root MSE = 17.401
tot_exp | Coef. Std. Err. t P>|t] [95% Conf. Interval]
____________ e e e
hhz_usu | 2.586416 .0556412 46.48 0.000 2.477353 2.695478
regcol | -1.656508 .5287445 -3.13 0.002 -2.6929 -.6201148
regco2 | -1.59704 .650351 -2.46 0.014 -2.871794 -.3222864
regco3 | -1.721974 .3587041 -4.80 0.000 -2.425071 -1.018878
regcod4 | -2.516142 -3437652 -7.32 0.000 -3.189956 -1.842327
_cons | 6.028982 -333079 18.10 0.000 5.376113 6.68185

. test regcol=0

(1) regcol =0
FC 1, 17289) = 9.82
Prob > F = 0.0017
. test regcol=regco2=regco3=regco4
(1) regcol - regco2 =0
(2) regcol - regco3 =0
(3) regcol - regcod4 = 0
FC 3, 17289) = 1.66
Prob > F = 0.1726

test and predict are commands that can be used in conjunction with all of the above estimation
procedures.

The suest command combines the estimation results from regressions (including parameter
estimates and associated covariance matrices) into a single parameter vector and simultaneous
covariance matrix of the sandwich/robust type.

Typical applications of suest command are tests for intra-model and cross-model hypotheses
using test or testnl command, such as a generalized Hausman specification test, or Chow test for
structural break.

Before we perform any test using suest command, it is important we first keep estimation results
by estimates store command.

. reg tot exp hhz usu if urban==1
. estimates store urban
. reg tot _exp hhz_usu if urban==0
. estimates store rural

58

. suest urban rural

Simultaneous results for urban, rural

Number of obs = 17295
| Robust
| Coef. Std. Err. z P>|z] [95% Conf. Interval]
____________ S
urban_mean |
hhz_usu] 3.43175 -1170849 29.31 0.000 3.202268 3.661232
_cons| 5.729652 -4250396 13.48 0.000 4.89659 6.562714
____________ S
urban_Invar |
_cons| 6.092408 -1238756 49.18 0.000 5.849617 6.3352
____________ e
rural_mean |
hhz_usu] 1.932295 .0492704 39.22 0.000 1.835727 2.028863
_cons| 3.576649 .2157359 16.58 0.000 3.153814 3.999484
____________ e e e
rural_Invar |
_cons| 4.748265 -3268713 14.53 0.000 4.107609 5.388921

We would like to test if the hhz_usu coefficients are zeros by using test command.

. test hhz_usu

(1) [urban_mean]hhz_usu = 0
(2) [rural_mean]hhz_usu = 0
chi2(2) = 2397.14

Prob > chi2 = 0.0000

Next we want to see if the same hhz_usu coefficient holds for rural and urban households. We
can type

. test [urban_mean]hhz_usu=[rural_mean]hhz_usu
(1) [urban_mean]hhz_usu - [rural_mean]hhz_usu = 0

chi2(1)
Prob > chi2

139.33
0.0000

Or we can test if coefficients between equations are equal, or a Chow test.

. test ([urban_mean]hhz_usu=[rural_mean]hhz_usu)
([urban_mean]_cons=[rural_mean] cons)

(1) [urban_mean]hhz_usu - [rural_mean]hhz_usu = 0
(2) [urban_mean] cons - [rural_mean] cons = 0

1414.59
0.0000

chi2(2)
Prob > chi2

59

This is equivalent to have accumulate options in test command, which tests hypothesis jointly
with previously tested hypotheses

. test ([urban_mean]hhz_usu=[rural_mean]hhz_usu)
. test ([urban_mean] cons=[rural_mean] cons) , accumulate

(1) [urban_mean]hhz_usu - [rural_mean]hhz_usu = 0
(2) [urban_mean] cons - [rural_mean] cons = 0

chi2(2) = 1414.59
Prob > chi2 = 0.0000
Heteroskedasticity

We can always visually check how well the regression surface fits the data y plotting residuals
versus fitted values, like rvfplot or rvpplot commands. In addition, there are a bunch of
statistical tests to test heteroskedasticity in regression errors.

We can use the hettest command to run an auxiliary regression of Ine’ on the fitted values.

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of tot _exp

chi2()
Prob > chi2

33821.20
0.0000

We can also use information matrix test by imtest command, which provides a summary test of

violations of the assumptions on regression errors.
imtest

Cameron & Trivedi"s decomposition of IM-test

Source | chi2 df p
_____________________ S,
Heteroskedasticity | 216.69 2 0.0000

Skewness | 49.16 1 0.0000

Kurtosis | 4.31 1 0.0379
_____________________ e
Total | 270.17 4 0.0000

For the next two tests first we need to download the programs from internet at
http://econpapers.repec.org/software/bocbocode/s390601.htm
and

60

http://econpapers.repec.org/software/bocbocode/s390602.htm

The bpagan command computes the Breusch-Pagan Lagrange multiplier test for
heteroskedasticity in the error distribution, conditional on a set of variables which are presumed
to influence the error variance. The test statistic, a Lagrange multiplier measure, is distributed
Chi-squared(p) under the null hypothesis of homoskedasticity.

- gen food2=exp_food"2

- gen lgfood=log(exp_TFood)

. regress tot_exp exp_food

. bpagan exp_food food2 lgfood

Breusch-Pagan LM statistic: 47406.9 Chi-sq(3) P-value = 0

The whitetst command computes White's test for heteroskedasticity following regression. This
test is a special case of the Breusch-Pagan test (bpagan). The White test does not require
specification of a list of variables, as that list is constructed from the explanatary list.
Alternatively, whitetst can perform a specialized form of the test which economizes on degrees
of freedom.

. whitetst

White"s general test statistic : 216.6935 Chi-sq(2) P-value = 8.8e-48

Both tests rejects the null hypothesis of homoskedasticity.

xi command for categorical data

When there is categorical data, it could be inefficient to generate a series of dummy variables.
The xi prefix is used to dummy code categorical variables, and we tag these variables with an
“1.” in front of each target variable.

In out example, the explanatory variable regco has 11 levels and requires 10 dummy variables.
The test command is used to test the collective effect of the 10 dummy-coded variables. In other
words, it tests the main effect of variable regco. Note that the dummy-coded variables name is
written in exactly the same one as it appears in the regression results, including the uppercase I.

- Xi: regress tot_exp hhz_usu i.regco

i.regco _lregco_1-15 (naturally coded; _lregco_ 1 omitted)
Source | SS df MS Number of obs = 17295
———————————— Fo FC 11, 17283) = 279.97
Model | 895547 .87 11 81413.4427 Prob > F = 0.0000
Residual | 5025769.54 17283 290.79266 R-squared = 0.1512
———————————— Fom Adj R-squared = 0.1507
Total | 5921317.41 17294 342.391431 Root MSE = 17.053
tot_exp | Coef. Std. Err. t P>|t] [95% Conf. Interval]

61

+

hhz_usu | 2.548534 .0546996 46.59 0.000 2.441317 2.655751
_lregco_2 | .061185 .7765802 0.08 0.937 -1.460991 1.583361
“lregco 3 | -.0698934 5657551 -0.12 0.902 -1.178831 1.039044
“lregco 4 | -.8451452 5577965 -1.52 0.130 -1.938483 .2481925
“lregco 5 | 1.39709 .7595084 1.84 0.066 -.091623 2.885804
“lregco 6 | -.3928507 .7416831 -0.53 0.596 -1.846625 1.060923
“lregco_7 | -2.886479 5862374 -4.92 0.000 -4.035564 -1.737395
“lregco_12| -.8356235 .7902772 -1.06 0.290 -2.384647 .7133998
“lregco 13| 3.721305 .7960722 4.67 0.000 2.160923 5.281688
“lregco_14] 11.42991 .6543105 17.47 0.000 10.14739 12.71242
“lregco_15| 1.545186 .760929 2.03 0.042 .0536878 3.036684
_cons| 4.543275 .5417198 8.39 0.000 3.48145 5.605101

. test _lregco_ 2 lIregco_3 _Iregco 4 Iregco 5 Iregco 6 _lregco 7 _lregco_ 12
_lregco_13 _Iregco_14 _lIregco_15

(1) _Iregco 2 =0
(2) _Iregco 3 =0
(3 _Iregco 4 =0
(4 _Iregco 5 =0
(5 _lIregco 6 =0
(6) _lIregco 7 =0
(7)) _Iregco 12 =0
(8 _Iregco 13 =0
(9 _Iregco 14 =0
(10) _Iregco 15 =0
FC 10, 17283) = 78.53
Prob > F = 0.0000

We reject the null hypothesis of no regional effects since p-value is small.

The xi prefix can also be used to create dummy variables for regco and for the interaction term
of regco and hhz_usu. The first test command tests the overall interaction and the second test
command test the main effect of urban.

. Xi: regress tot_exp hhz_usu i.regco*hhz_usu

. test IregXhhz__ 2 IregXhhz__ 3 IregXhhz__ 4 IregXhhz_ 5 IregXhhz_ 6
_IregXhhz__ 7 lIregXhhz__ 12 IlIregXhhz_ 13 lregXhhz__ 14 lregXhhz__ 15

. test _Iregco 2 lIregco_3 _Iregco 4 Iregco 5 lregco 6 _lregco 7 _lregco 12
_lIregco_13 _Iregco_14 _lregco_15

By default, Stata selects the first category in the categorical variable as the reference category. If
we would like to declare a certain category as reference category, the char command is needed.

In the model above, we would like to use region 5 as reference region, and the commands are

. char regco[omit] 5

- Xi: regress tot_exp hhz_usu i.regco

62

i.regco

Source
Model
Residual

hhz_usu
_lIregco_1
_lregco_2
_lIregco_3
_lregco_4
_lregco_6
_lregco_7
_lIregco_1
_lIregco_1
_lregco_1
_lregco_1

————— —— | —

2|
31
4]
]|

tted)

17295
279.97
0.0000
0.1512
0.1507
17.053

nterval]

2.655751

.091623
-3209459
-1786041
-9697271
-.195575
2.963573
-5510015
4.016531

11.4697

1.77599

_lregco_1-15 (naturally coded; lregco 5 omi
SS df MS Number of obs =
———————————————————————————— FC 11, 17283) =
895547 .87 11 81413.4427 Prob > F =
5025769.54 17283 290.79266 R-squared =
———————————————————————————— AdjJ R-squared =
5921317.41 17294 342.391431 Root MSE =
Coef. Std. Err. t P> t]| [95% Conf. 1
2.548534 -0546996 46.59 0.000 2.441317
-1.39709 . 7595084 -1.84 0.066 -2.885804
-1.335905 .8452886 -1.58 0.114 -2.992757
-1.466984 .6573026 -2.23 0.026 -2.755363 -
-2.242236 .6492055 -3.45 0.001 -3.514744 -
-1.789941 .81341 -2.20 0.028 -3.384307
-4.28357 .6734329 -6.36 0.000 -5.603566 -
-2.232714 .8579721 -2.60 0.009 -3.914426 -
2.324215 -8633818 2.69 0.007 .6318993
10.03282 .7330675 13.69 0.000 8.59593
.1480954 .8305156 0.18 0.858 -1.479799
5.940366 .6479407 9.17 0.000 4.670336

_con

sl

7.210395

Some estimation procedures in Stata are included here:

rreg

anova	analysis of variance and covariance	
arch		autoregressive conditional heterosce. family of estimators
arima	autoregressive integrated moving average models	
\ bsgreg H quantile regression with bootstrapped standard errors]		
cnreg		censored-normal regression
cnsreg		constrained linear regression
ereg	maximum-likelihood exponential distribution models	
glm	generalized linear models	
ivreg	instrumental variable and two-stage least squares regression	
Inormal	maximum-likelihood lognormal distribution models	
mvreg		multivariate regression
nl	nonlinear least squares	
poisson		maximum-likelihood poisson regression
greg		quantile regression
reg3	three-stage least squares regression	
regress	linear regression	

| robust regression using IRLS

63

sureg		seemingly unrelated regression
tobit	tobit regression	
wwils	variance-weighted least squares regression	
zinb	zero-inflated negative binomial model	
zip	zero-inflated poisson models	

64

Chapter 13. Logistic Regression

Logistic regression

We are not going to talk the theory behind logistic regression, per se, but focus on how to
perform logistic regression analyses and interpret the results using Stata. It is assumed that users
are familiar with logistic regression.

We will use the ethiopial.dta dataset. It added one binary response variable called poverty. The
logistic command by default produces the output in odds ratios but can display the coefficients if

the coef options is used.

logistic poverty hhz_usu agehhh, coef

Logistic regression

Log likelihood = -10398.765

Number of obs

17295
980.69
0.0000
0.0450

Interval]

____________ S

poverty | Coef
hhz_usu | -2142649
agehhh | .0019468

_cons | -1.879701

Std. Err. z

0072011 29.75
.0011607 1.68
.0610683 -30.78

LR chi2(2) =

Prob > chi2 =

Pseudo R2 =
P>|z] [95% Conf.
0.000 .2001511
0.093 -.0003281
0.000 -1.999392

.2283787
-0042218
-1.760009

The exact same results can be obtained by using the logit command.

logit poverty hhz_usu agehhh

Iteration
Iteration
lIteration
lteration

WNEFO

log likelihood
log likelihood
log likelihood
log likelihood

Logistic regression

Log likelihood = -10398.765

poverty |

-10889.111
-10401.544
-10398.765
-10398.765

Std. Err. z

Number of obs

17295
980.69
0.0000
0.0450

Interval]

____________ o

hhz_usu |
agehhh |
_cons |

-1.879701

-2142649
-0019468

-0072011
-0011607
-0610683

LR chi2(2) =

Prob > chi2 =

Pseudo R2 =
P>|z] [95% Conf.
0.000 .2001511
0.093 -.0003281
0.000 -1.999392

.2283787
-0042218
-1.760009

The xi prefix can also be used in logistic model to include categorical variables.

- xi:z logit poverty hhz_usu agehhh i.urban

65

-urban _lurban_0-1 (naturally coded; _lurban_0O omitted)
Iteration O: log likelihood = -10889.111
Iteration 1: log likelihood = -9795.1014
Iteration 2: log likelihood = -9770.7937
Iteration 3: log likelihood = -9770.7226
Logistic regression Number of obs = 17295
LR chi2(3) = 2236.78
Prob > chi2 = 0.0000
Log likelihood = -9770.7226 Pseudo R2 = 0.1027
poverty | Coef Std. Err z P>]z] [95% Conf. Interval]
____________ e
hhz_usu | .2127718 .0074852 28.43 0.000 .198101 .2274426
agehhh | .0026375 .0011946 2.21 0.027 .0002961 .0049788
_lurban_1 | -1.22581 .0357395 -34.30 0.000 -1.295858 -1.155762
_cons | -1.362829 .0643528 -21.18 0.000 -1.488958 -1.2367

Extract results

We can use ereturn or estat command to retrieve results from estimation, same as with other

regression commands.

. Xi:
. ereturn list

scalars:
e(N) = 17332
e(11_0) = -10903.56206621753
e(1l) = -9782.301403136013
e(df.m) = 3
e(chi2) = 2242.521326163038
e(r2_p) = .102834344984885
macros:
e(title) : "Logistic regression"
e(depvar) : "poverty"
e(cmd) : "logit"”
e(crittype) : "log likelihood"
e(predict) : "logit p”
e(properties) : "b V"
e(estat_cmd) : "logit_estat”
e(chi2type) : "LR"
matrices:
e(b) : 1 x4
e(V) : 4x14
functions:
e(sample)

logit poverty hhz_|

usu agehhh i.urban

66

. estat summarize

Estimation sample logit Number of obs = 17332
Variable | Mean Std. Dev. Min Max
_____________ S
poverty | .3229864 -467631 0 1
hhz_usu | 4_.746596 2.390587 1 18
agehhh | 43.60322 14.90114 13 99
_lurban_1 | -5003462 -5000143 0 1
estat ic
Model | Obs 1 (null) 11 (model) df AIC BIC
____________ S
| 17332 -10903.56 -9782.301 4 19572.6 19603.64

Marginal effects

We use mfx command to numerically calculates the marginal effects or the elasticities and their
standard errors after estimation. Several options are available for the calculation of marginal
effects.

dydx is the default.

eyex specifies that elasticities be calculated in the form of d(Iny)/d(Inx)

dyex specifies that elasticities be calculated in the form of d(y)/d(Inx)

eydx specifies that elasticities be calculated in the form of d(Iny)/d(x)

. use "U:\notes\poverty.dta', clear
. xi: logit poverty hhz_usu agehhh i.urban
- mfx, dydx

Marginal effects after logit
y = Pr(poverty) (predict)

= .29852704
variable | dy/dx Std. Err z P>lz] L[95% C. 1. 1 X
_________ e
hhz_usu | .044831 .00155 28.99 0.000 .0418 .047862 4.7466
agehhh] .0005173 .00025 2.07 0.038 .000028 .001007 43.6032
_lurba~1*] -.2522575 .00693 -36.40 0.000 -.26584 -.238675 -500346

(*) dy/dx is for discrete change of dummy variable from O to 1

67

Hypothesis Tests

Likelihood-ratio test

The Irtest command performs a likelihood-ratio test for the null hypothesis that the parameter
vector of a statistical model satisfies some smooth constraint. To conduct the test, both the
unrestricted and the restricted models must be fitted using the maximum likelihood method (or
some equivalent method), and the results of at least one must be stored using estimates store.

The Irtest command provides an important alternative to Wald testing for models fitted by
maximum likelihood. Wald testing requires fitting only one model (the unrestricted model).
Hence, it is computationally more attractive than likelihood-ratio testing. Most statisticians,
however, favor using likelihood-ratio testing whenever feasible since the null-distribution of the
LR test statistic is often "more closely" chi-square distributed than the Wald test statistic.

We would like to see if the introduction of regional dummy will help our estimation. We perform
a likelihood ratio test using Irtest command.

. xi: logit poverty hhz_usu agehhh i.urban
. estimates store ml
. logit poverty hhz_usu agehhh

. Irtest ml
Likelihood-ratio test LR chi2(1) = 1256.08
(Assumption: . nested in ml) Prob > chi2 = 0.0000

The null hypothesis is firmly rejected.

Other hypothesis tests for parameters are the same as described in OLS.

Other related commands

In addition to the built-in Stata commands, we will be demonstrating the use of a number of user-
written ado’s, in particular, listcoef, fitstat, prchagne, prtab, prgen, etc. Those ado files
streamline the process and presents the results in a nice looking format. To find out more about
these programs or to download them type findit followed by the program name in the Stata
command window.

. findit listcoef

Web resources from Stata and other users
(contacting http://www.stata.com)

3 packages found (Stata Journal and STB listed first)

sg152 from http://www.stata.com/sth/stb57

68

STB-57 sgl52. Listing and interpreting transformed coef. from ... /
Listing and interpreting transformed coefficients from certain /
regression models / STB insert by J. Scott Long, Indiana University /
Jeremy Freese, University of Wisconsin-Madison / Support:

spostado from http://www.indiana.edu/~jslsoc/stata
spostado: Stata 8 & 7 commands for the post-estimation interpretation of /
regression models. Based on Long"s Regression Models for Categorical / and
Limited Dependent Variables. / Support: www.indiana.edu/~jslsoc/spost.htm
/ Scott Long & Jeremy Freese (spostsup@indiana.edu)

spost9 _ado from http://www.indiana.edu/~jslsoc/stata
spost9_ado Stata 9 commands for the post-estimation interpretation of /
regression models. Install spostado.pkg for Stata 8. / Based on Long"s
Regression Models for Categorical and Limited / Dependent Variables.
Second Edition. / Support www.indiana.edu/~jslsoc/spost.htm /Scott Long &

These add-on programs ease the running and interpretation or ordinal logistic models. Or, you
can install the complete spostado package by clicking on one of the links under web resources.

One useful command is prchange, which computes discrete and marginal change for regression
models for categorical and count variables. Marginal change is the partial derivative of the
predicted probability or predicted rate with respect to the independent variables. Discrete change
is the difference in the predicted value as one independent variable changes values while all
others are held constant at specified values.

The discrete change is computed when a variable changes from its minimum to its maximum
(Min->Max), from 0 to 1 (0->1), from its specified value minus .5 units to its specified value
plus .5 (-+1/2), and from its specified value minus .5 standard deviations to its value plus .5
standard deviations (-+sd/2).

. xi: logit poverty hhz_usu agehhh i.urban
- prchange

logit: Changes in Probabilities for poverty
min->max 0->1 -+1/2 -+sd/2 MargEfct
hhz_usu 0.7162 0.0267 0.0446 0.1062 0.0446
agehhh 0.0482 0.0005 0.0006 0.0082 0.0006
_lurban_1 -0.2530 -0.2530 -0.2529 -0.1280 -0.2571

0 1
Pr(y|x) 0.7007 0.2993

After estimating a regression model, the prtab command presents a one- to four-way table
of the predicted values (probabilities, rate) for different combinations of values of independent
variable.

. prtab hhz_usu
. prtab hhz_usu, x(agehhh=50 _lurban_1==0)

logit: Predicted probabilities of positive outcome for poverty

69

Number of

I
usual |
household |
members | Prediction
__________ e
1] 0.2634
2] 0.3070
3] 0.3543
4] 0.4047
5] 0.4571
6 | 0.5106
7 1 0.5637
8 | 0.6155
9 | 0.6647
10 | 0.7107
11 | 0.7526
12 | 0.7903
13 | 0.8236
14 | 0.8526
15 | 0.8775
16 | 0.8987
17 | 0.9166
18 | 0.9316

We interpret the results from prtab command in this way, given a rural household with
household head ages 50, the probability of the household stays in poverty increases from 0.2634
to 0.9316 as the number of household member goes up.

The prgen command computes predicted values and confidence intervals for regression with
continuous, categorical, and count outcomes in a way that is useful for making plots. Predicted
values are computed for the case in which one independent variable varies over a specified range
while the others are held constant. You can request variables containing upper and lower bounds
for these variables. You can also create a variable containing the marginal change in the outcome
with respect to the specified variable, holding other variables constant. New variables are added
to the existing dataset that contain these predicted values that can be plotted.

In first prgen command, we generate variable urbanpovertypl for predicted probability of being
poor and urbanpovertypl for being not poor. Since we know from prtab command that hhz_usu
takes value from 1 to 18, we use ncases() option to define the number of predicted values as
urbanpovertyx varies from the start value 1 to the end value 18.

. prgen hhz_usu, gen(urbanpoverty) x(_lurban_1=1) ncases(18)
logit: Predicted values as hhz_usu varies from 1 to 18.
- prgen hhz_usu, gen(ruralpoverty) x(_lurban_1=0) ncases(18)
logit: Predicted values as hhz_usu varies from 1 to 18.

. graph twoway (connected urbanpovertypl urbanpovertyx) (connected
ruralpovertypl ruralpovertyx), legend(label(1 "urban'™) label(2 "rural'))

70

T
5} 10 1! 20
Number of usual household members

—@—— urban —&— rural

Stata has a variety of commands for performing estimation when the dependent variable is
dichotomous or polychotomous. Here is a list of some estimation commands for discrete
dependent variable. See estimation commands for a complete list of all of Stata's estimation
commands.

lasmprobit | alternative-specific multinomial probit regression |
\binreg H GLM models for the binomial family \
lbiprobit | bivariate probit regression |
blogit | logit regression for grouped data |
lbprobit | probit regression for grouped data |
clogit | conditional logistic regression |
\cloglog H complementary log-log regression \
lglogit | weighted least squares logit on grouped data |
\gprobit | weighted least squares probit on grouped data |
lheckprob | probit model with selection |
lhetprob | heteroskedastic probit model |
livprobit | probit model with endogenous regressors |
llogistic | logistic regression |
\Iogit H maximum-likelihood logit regression \
\mlogit H maximum-likelihood multinomial logit models \
Improbit | multinomial probit regression |
Inbreg | maximum-likelihood negative binomial regression |
Inlogit | nested logit regression |
lologit | maximum-likelihood ordered logit |
\oprobit H maximum-likelihood ordered probit \

71

lprobit

| maximum-likelihood probit estimation

|
rologit | rank-ordered logistic regression |
Iscobit | skewed logistic regression |
slogit | stereotype logistic regression |
Ixtcloglog | random-effects and population-averaged cloglog models |
Ixtgee | GEE population-averaged generalized linear models |
Ixtlogit | fixed-effects, random-effects, and population-averaged logit models |
Ixtprobit | random-effects and population-averaged probit models |

72

Chapter 14. Simulation

Class
Before we get started, let’s first classify Stata commands into three categories:

r-class: general commands such as summarize. Results are returned in r() and generally must
be used before executing more commands.

The return list command lists results stored in r().

. summarize tot_exp
Variable | Obs Mean Std. Dev. Min Max
_____________ e
tot_exp | 17295 17.25426 18.50382 6677808 602.4645

. return list

scalars:
r(N) = 17295
r(sum_w) = 17295
r(mean) = 17.25426066783716
r(Var) = 342.3914311936321
r(sd) = 18.50382206987606
r(min) = .6677808165550232
r(max) = 602.4645385742188
r(sum) = 298412.4382502437

We can save the results from summarize command into our dataset.

- gen mean=r(mean)

e-class: estimation commands such as regress, logistic, that fit statistical models. Such
estimation results stay around until the next model is fitted. Results are returned in e().

The ereturn list command lists results stored in e(). We’ve seen examples of ereturn in
regression and logistic models before.

There are also s-class, n-class, and c-class commands, but we will skip them for now.

Program command

The program command defines and manipulates programs, and return results in r() if using the
return command. Or the program can be defined as e-class and returns results in e() by using the
ereturn command. In the program, return commands are used to return saved results defined as
e- or r-class. We tell Stata that the program is finished by using the end command.

73

Let’s write a very simple program called t, to display “hello” on the screen.

program t, rclass
display "hello”
end

When we would like to use program t to display a “hello” on the screen, we simply type

-t
hello

And “hello” will appear on the screen.

The program command allows users to write their own programs and use them later, which
provides great flexibilities and efficiency. Let’s look at another example of program to calculate
per capita expenditure and return the results as a scalar. We name the program myprog.

program define myprog, rclass

version 9

summarize "1’

local exp = r(mean)

summarize ~2°

local people =r(mean)

return scalar pcexp = “exp"/ people*
end

use "'u:\notes\ethiopia.dta', clear
myprog tot_exp hhz_usu

This program myprog executes like this: first our program calls summarize and stores the mean
of the variable tot_exp in a local macro exp. The program then repeats this procedure for the
second variable hhz_usu and stores the mean in another local macro people. Finally, the ratio of
the two means is computed and returned as a scalar by our program in the saved result we call

r(pcexp).
return list

display "Average per capita expenditure is " r(pcexp)
Average per capita expenditure is 3.635081

Simulation

Bootstrap command

The bootstrap command handles repeatedly drawing a sample with replacement, running the
user-written program, collecting the results into a new dataset, and presenting the bootstrap

results. It allows user to supply an expression that is a function of the saved results of existing
commands, or they can write a program to calculate the statistics of interest. The user-written

74

calculation program is easy to write because every Stata command saves the statistics it
calculates.

For instance, assume that we wish to obtain the bootstrap estimate of the standard error of the
mean of variable tot_exp. Stata has a built-in command, summarize, that calculates and displays
summary statistics including means. In addition to displaying the calculated results, the
summarize command saves them in the form of r().

. sum tot_exp
Variable | Obs Mean Std. Dev. Min Max
_____________ e
tot_exp | 17295 17.25426 18.50382 .6677808 602.4645

. return list

scalars:
r(N) = 17295
r(sum_w) = 17295
r(mean) = 17.25426066783716
r(Var) = 342.3914311936321
r(sd) = 18.50382206987606
r(min) = .6677808165550232
r(max) = 602.4645385742188
r(sum) = 298412.4382502437

In order to get a bootstrap estimate of standard error of mean, all we need to do is to type the
bootstrap command and Stata will do the work. The reps() option is required since it specifies
the number of bootstrap replications to be performed. The default number is 50. It is
recommended to choose a large but tolerable number of replications to obtain the bootstrap
estimates.

. bootstrap r(mean), rep(50): sum tot_exp
(running summarize on estimation sample)

Warning: Since summarize is not an estimation command or does not set
e(sample), bootstrap has no way to determine which observations are used in
calculating the statistics and so assumes that all observations are used.
This means no observations will be excluded from the resampling due to
missing values or other reasons.

IT the assumption is not true, press Break, save the data, and drop the
observations that are to be excluded. Be sure that the dataset in memory
contains only the relevant data.

Bootstrap replications (50)

.. 50
Bootstrap results Number of obs = 17332
Replications = 50

command: summarize tot_exp

75

_bs 1: r(mean)

| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z] [95% Conf. Interval]
____________ e
bs_1 | 17.25426 .124953 138.09 0.000 17.00936 17.49916

The output tells us that if we would like to specify the size of the sample to be drawn, instead of
all observations by default, we can set sample size by size() option. Note that sample size should
always be less than or equal to the number of observations.

. bootstrap r(mean), rep(200) size(10000): sum tot_exp
(running summarize on estimation sample)

Bootstrap results Number of obs = 17332
Replications = 200
command: summarize tot_exp
_bs 1: r(mean)

| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>]z] [95% Conf. Interval]
____________ g
bs 1 | 17.25426 .1963464 87.88 0.000 16.86943 17.63909

Still we would like to have a look at the resulting mean for each bootstrap replicates, which is
saved as a Stata data file. If we add saving() option, the results will be saved in specified file that
we can open and look into it.

. bootstrap b, rep(200) size(10000) saving(bootstrapl, replace): reg tot exp
hhz_usu

Linear regression Number of obs = 17295
Replications = 200
wald chi2(1) = 727.49
Prob > chi2 = 0.0000
R-squared = 0.1127
AdjJ R-squared = 0.1126
Root MSE = 17.4307
| Observed Bootstrap Normal-based

tot_exp | Coef. Std. Err. z P>|z] [95% Conf. Interval]
____________ S
hhz_usu | 2.601727 .0964602 26.97 0.000 2.412668 2.790785
_cons | 4.890831 -3839908 12.74 0.000 4.138223 5.643439

Let’s compare the bootstrap estimates to OLS, and see the difference.

. reg tot_exp hhz_usu

Source | SS df MS Number of obs = 17295

76

———————————— Fom FC 1, 17293) = 2195.97
Model | 667200.753 1 667200.753 Prob > F = 0.0000
Residual | 5254116.66 17293 303.829102 R-squared = 0.1127
------------ o AdjJ R-squared = 0.1126
Total | 5921317.41 17294 342.391431 Root MSE = 17.431
tot_exp | Coef. Std. Err. t P>|t] [95% Conf. Interval]
____________ e e
hhz_usu | 2.601727 -0555198 46.86 0.000 2.492902 2.710551
_cons | 4.890831 .2952526 16.56 0.000 4.312106 5.469556

Another option seed() sets the random-number seed for bootstrapping. We can change the
random number seed and obtain the bootstrap estimates again, using the same number of
replications. If the results change dramatically, the number of replications we choose is too small
and let’s pick a larger number. If results are similar enough, we probably have a large enough
number.

. bootstrap r(mean), rep(50) seed (123456): sum tot _exp

| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>]z] [95% Conf. Interval]
____________ e
bs 1 | 17.25426 .1315345 131.18 0.000 16.99646 17.51206

| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z] [95% Conf. Interval]
____________ e e e
bs_1 | 17.25426 -1374904 125.49 0.000 16.98478 17.52374

We might agree that 50 replicates are good enough to serve our purpose.

For an example of a situation where we need to write a program, consider the case of
bootstrapping the per capita expenditure. We first define the calculation routine using program
command, which we name myprog, defined at the beginning of this chapter.

With our program written, we can now obtain the bootstrap estimate by simply typing

use "'u:\notes\ethiopia.dta", clear

bootstrap pcexpd=r(pcexp), rep(1l00) seed(123456) size(1000): myprog tot_exp
hhz_usu

to execute bootstrap with our pcexp program for 100 replications.

77

Bootstrap results Number of obs = 17332
Replications = 100
command: myprog tot_exp hhz_usu
pcexpd: r(pcexp)

| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z] [95% Conf. Interval]
____________ S
pcexpd | 3.635081 .1065683 34.11 0.000 3.426211 3.843951

Jackknife command

The jackknife command calculates estimates by leaving out one observation from the sample at
one time, and no sampling method is needed for jackknife estimation. The jackknife is a reliable
method for estimating standard error nonparametrically. The method is easy to use, but it could
be extremely computationally intensive.

The eclass, rclass, and n() options specify where the number of observations on which it based
the calculated results.

eclass specifies that command save the number of observations in e(N).
rclass specifies that command save the number of observations in r(N).
n() specifies an expression that evaluates to the number of observations used.

We can estimate the standard deviation of the standard deviation of tot_exp, so we type

Jackknife sd=r(sd), rclass: summarize tot_exp

It takes at least 15 minutes for my computer to execute this command, and the output is

Jackknife results Number of obs = 17295
Replications = 17295
command: summarize tot_exp
sd: r(sd)
nO: r(N)
| Jackknife

| Coef. Std. Err. t P>]t] [95% Conf. Interval]
____________ e
sd | 18.50382 -9552704 19.37 0.000 16.6314 20.37625

Simulate command

The syntax of simulate command is

Simulate exp_list, reps(#): command

78

The simulate command performs Monte Carlo type simulations by running specified commands
for # replications and save the results in exp_list. Most Stata commands and user-defined
programs can be used with simulate. The reps() option is required to specify the number of
replications to be performed.

Let’s make a dataset containing means and variances of 100-observation samples from a
standard normal distribution by performing the experiment 10,000 times:

capture program drop normalsim
program define normalsim, rclass

version 9

syntax [, obs(integer 1) mu(real 0) sigma(real 1)]
drop _all

set obs "obs*

tempvar z

gen ~z" = "mu” + “sigma"*invnorm(uniform())

summarize "~z

return scalar mean = r(mean)

return scalar Var = r(Var)
end

simulate mean=r(mean) var=r(Var), reps(10000): normalsim, obs(100)

The resulting dataset contains means and variances of 100 observations from 10,000 samples.

sum
Variable | Obs Mean Std. Dev. Min Max
_____________ e
mean | 10000 -.001763 .0998963 -.346022 .3886282
var | 10000 1.001679 .1408844 .5014969 1.698629

To make a dataset containing means and variances of 50-observation samples from a normal
distribution with a normal mean of and standard deviation of 7. Perform the experiment 10,000
times:

- simulate mean=r(mean) var=r(Var), reps(10000): normalsim, obs(50) mu(-3)
sigma(7)

79

Chapter 15. System Equations

The most common problem in estimating system equations are seemingly unrelated regressions

(SURE). The sureg command fits SURE models.

Let’s borrow an example from internet on student scores (details can be find at
http://www.ats.ucla.edu/stat/stata/notes/hsbh2.dta) and we are interested in estimating a SURE

model with two equations:

read=f(write, math, science)
socst=f(write, math, science)

We will use sureg command with two equations defined by parentheses:

. use http://www.ats.ucla.edu/stat/stata/notes/hsb2.dta, clear

(highschool and beyond (200 cases))

. describe

Contains data from http://www.ats.ucla.edu/stat/stata/notes/hsb2._dta

obs: 200

vars: 11

size: 9,600 (99.9% of memory free)

storage display value

variable name type format label
id float %9.0g
female float %9.0g Tl
race float %12.0g ri
ses float %9.0g sl
schtyp float %9.0g scl
prog float %9.0g sel
read float %9.0g
write float %9.0g
math float %9.0g
science float %9.0g

socst

highschool and beyond (200
cases)
20 Jun 2000 14:13

variable label

type of school

type of program
reading score
writing score

math score

science score

social studies score

. sureg (read write math science) (socst write math science)

Seemingly unrelated regression

Equation Obs Parms RMSE
read 200 3 6.930412
socst 200 3 8.180626

R-sq chi2 P
0.5408 235.54 0.0000
0.4164 142.73 0.0000

write
math
science
_cons

science
_cons

.2376706
-3784015
-2969347
4.369926

-4656741
-2763008
-0851168

-0689943
-0738838
-0669546
3.176527

-0814405
.0872121
-0790329

z P>]z] [95% Conf. Interval]
3.44 0.001 .1024443 .3728968
5.12 0.000 .2335919 .5232111
4.43 0.000 .1657061 .4281633
1.38 0.169 -1.855954 10.59581
5.72 0.000 -3060536 .6252946
3.17 0.002 .1053682 .4472334
1.08 0.281 -.0697848 .2400185
2.37 0.018 1.520886 16.21888

8.869885

3.749558

Now, say that we would like to constrain the write coefficient to be the same for the read and
socst dependent variable. The constraint command is used to define a constraint named 1.

. constraint define 1 [read]write =

[socst]write

. sureg (read write math science) (socst write math science), constraint(l)

Extract results

We can first use estat command to check covariance matrix.

. estat vce

Covariance matrix of coefficients of sureg model

| read
e(V) | write math
math science _cons
read |
write | .00476021
math | -.00206069 -00545882
science | -.00136975 -.00213253
~cons | -.0717133 -.06805451
_____________ +
socst |
write | .00181246 -.00078461
math | -.00078461 -00207846
-00760595
science | -.00052153 -.00081197
-00297133 -0062462
_cons | -.02730498 -.02591189
-.0948226 -.06671808 14.059187

science

-00448292
-.0478838

-.00052153
-.00081197

-00170688

-.01823185

81

10.090327

-.02730498
-.02591189

-.01823185

3.8419121

|
| .00663256
| -.00287123

| --00190852 -

| -.09992051

Chapter 16. Simultaneous Equations

Sometimes we need to consider the issue of simultaneous equations, where the model equations
are jointly determined. Variables that depend on the model are endogenous variables and
variables determined outside of the model are exogenous.

Here we will estimate a simultaneous equation model from Greene’s “Econometric Analysis”

(2000, pp 655). This is Klein’s small, dynamic model of consumption, investment, private
wages, equilibrium demand, private profits, and capital stock.

C,=oa,+ aP + P, Lt a3(WP + W¢) + ¢, (consumption),

W{'f : 180 i‘ !31)}; i B,P,_ |+ B.K, _ + 62;‘ (investment),
1‘} - z? N }f1+ ¢ YX, |+ '}/3/-1: * €, (private wages),
P X T WP (equilibrium demand),
K K s I (pmfate profits),
rq T4, (capital stock).

In this model, c, I, w are the endogenous variables, while g, t, wg, yr are exogenous variables.

The dataset is obtained from internet as

use http://www.ats.ucla.edu/stat/stata/examples/greene/TBL16-2, clear
generate w = wg+wp
generate k = kl+i
generate yr=year-1931
- generate pl = p[_n-1]
(1 missing value generated)
generate x1 = x[_n-1]
(1 missing value generated)
. save u:\notes\tablel6-2._.dta, replace
(note: file u:\notes\tablel6-2.dta not found)
file u:\notes\tablel6-2._dta saved

There is more than one way to estimate this model. We usually use instrumental variables to
estimate simultaneous equations, to obtain whether a set of consistent estimates by least squares.

Method 1. use ivreg demand

We can use ivreg command to perform 2SLS on single equation of consumption function. The
initial ivreg command produces the correct coefficients but the standard errors are wrong.
Additional code is added to obtain the correct standard errors.

. Ivregc pl (pw=1twggyr pl x1 k1)

Instrumental variables (2SLS) regression

82

Source | SS df MS Number of obs = 21
———————————— - FC 3, 17) = 225.93
Model | 919.504138 3 306.501379 Prob > F = 0.0000
Residual | 21.9252518 17 1.28972069 R-squared = 0.9767
———————————— o AdjJ R-squared = 0.9726
Total | 941.429389 20 47.0714695 Root MSE = 1.1357

c | Coef. Std. Err. t P>|t] [95% Conf. Interval]
____________ e e e
p | .0173022 -1312046 0.13 0.897 -.2595153 .2941197

w| .8101827 .0447351 18.11 0.000 .7158 .9045654

pl | .2162338 .1192217 1.81 0.087 -.0353019 .4677696

_cons | 16.55476 1.467979 11.28 0.000 13.45759 19.65192

Instrumented: p w
Instruments: pl t wg g yr x1 ki1

/* additional code to get correct standard errors, thanks to Kit Baum */
. mat vpr=e(M)*e(df_r)/e(N)

- mat se=e(b)

. local nc=colsof(se)

. forv i=1/"nc" { mat se[l1, i"]=sqrt(vpr["i","i"]) }

. mat list se

se[1,4]

p w pl _cons
yl .11804942 .04024972 .10726797 1.3207925

Method 2. use reg3 command

We can also run a 2SLS use reg3 command for single equation estimation of the consumption
function and obtain correct standard errors.

. reg3 (c p pl w), 2sls nodfk inst(t wg g yr pl x1 k1)

Two-stage least-squares regression

Equation Obs Parms RMSE "R-sq" F-Stat P
c 21 3 1.135659 0.9767 279.09 0.0000
| Coef. Std. Err. t P>|t] [95% Conf. Interval]
____________ g
c I
p 1 -0173022 -1180494 0.15 0.885 -.2317603 .2663647
pl | .2162338 .107268 2.02 0.060 -.0100818 .4425495
w | .8101827 .0402497 20.13 0.000 .7252632 .8951022
cons | 16.55476 1.320793 12.53 0.000 13.76813 19.34139

Endogenous variables: c p w

83

Exogenous variables: twg g yr pl x1 ki1

Method 3. use reg3 for 2SLS

We can run a 2SLS use reg3 command to estimate limited-information estimates for system of
equations of the consumption, investment, and wage functions.

-reg3 (cpplw (ipplkl) (w x x1 yr), 2sls nodfk inst(t wg g yr pl x1
k1)

Two-stage least-squares regression

3 1.135659 0.9767 279.0941 0.0000
i 21 3 1.307149 0.8849 50.89437 0.0000
3 .7671548 0.9874 524.005 0.0000

| Coef Std. Err t P>]t] [95% Conf. Interval]

____________ g
c I

p | .0173022 .1180494 0.15 0.884 -.2196919 .2542963

pl | .2162338 .107268 2.02 0.049 -0008844 .4315833

w | .8101827 -0402497 20.13 0.000 .729378 .8909874

cons | 16.55476 1.320793 12.53 0.000 13.90316 19.20636

____________ e
i I

p | .1502219 .1732292 0.87 0.390 -.1975503 -4979941

pl | .6159434 .1627853 3.78 0.000 .2891382 .9427486

ki | -.1577876 .0361262 -4.37 0.000 -.2303141 -.0852612

cons | 20.27821 7.542704 2.69 0.010 5.135599 35.42082

____________ e e e
wp I

X | -4388591 -0356319 12.32 0.000 .3673251 .5103931

x1 | .1466739 .0388361 3.78 0.000 .0687071 .2246406

yr | .1303956 .029141 4.47 0.000 .0718927 .1888985

cons | 1.500296 1.147779 1.31 0.197 -.8039674 3.804559

Endogenous variables: c p w i wp X
Exogenous variables: twg g yr pl x1 ki1

Method 4. use reg3 for 3SLS

We can run a 3SLS use reg3 command to estimate full--information estimates for system of
equations of the consumption, investment, and wage functions.

-reg3 (cpplw (ipplkl) (wpx x1 yr), 3sls inst(t wg g yr pl x1 k1)

84

Three-stage least squares regression

Equation Obs Parms RMSE "R-sq" chi?2 P
c 21 3 -9443305 0.9801 864.5909 0.0000
i 21 3 1.446736 0.8258 162.9808 0.0000
wp 21 3 .7211282 0.9863 1594.751 0.0000
| Coef. Std. Err. z P>|z] [95% Conf. Interval]
____________ S
c I
p 1 -1248904 -1081291 1.16 0.248 -.0870387 -3368194
pl | -1631439 -1004382 1.62 0.104 -.0337113 -3599992
w | .790081 -0379379 20.83 0.000 .715724 .8644379
cons | 16.44079 1.304549 12.60 0.000 13.88392 18.99766
____________ S
i I
p |l -.0130791 -1618962 -0.08 0.936 -.3303898 .3042316
pl | .7557238 -1529331 4.94 0.000 -4559805 1.055467
k1 | --1948482 -0325307 -5.99 0.000 -.2586072 -.1310893
cons | 28.17785 6.793768 4.15 0.000 14.86231 41.49339
____________ e e e
wp |
x| -4004919 .0318134 12.59 0.000 .3381388 .462845
x1 | -181291 -0341588 5.31 0.000 -1143411 .2482409
yr | -149674 -0279352 5.36 0.000 .094922 .2044261
_cons | 1.797216 1.115854 1.61 0.107 -.3898181 3.984251

Endogenous variables: c p w i wp X
Exogenous variables: twg g yr pl x1 ki1

85

Chapter 17. Troubleshooting and Update

The help command followed by a Stata command brings up the on-line help system for that
command. It can be used from the command line or from the help window. With help you must
spell the full name of the command completely and correctly.

- help regress

The help contents will list all commands that can be accessed using help command.

- help contents

The search command looks for the term in help files, Stata Technical Bulletins and Stata FAQs.
It can be used from the command line or from the help window.

. search logit

The findit command can be used to search the Stata site and other sites for Stata related
information, including ado files. Say that we are interested in panel data, so we search for this
program from within Stata by typing

. Findit panel data

The Stata viewer window appears and we are shown a number of resources related to this key
word.

Stata is composed of an executable file and official ado files. Ado stands for automatically
loaded do file. An ado file is a Stata command that created by users like you. Once installed in
your computer, they work pretty much the same way so Stata commands. Stata files are regularly
updated. It is important to make sure that you are always running the most up to date Stata, and
please do so regularly.

The update command reports on the current update level and installs official updates to Stata. It
helps users to be up to date with the latest Stata ado and executable file, and copy and installs the
ado files into the directory specified.

. update
. update ado, into(d:\ado)

You can keep track of all the users ado files that you have added to your package over time by
ado command, which will list all of them, with information on where you got it from and what it
does.

. ado
[1] package spost9 ado from http://www.indiana.edu/~jslsoc/stata

86

spost9 _ado Stata 9 commands for the post-estimation interpretation of

[2] package st0081 from http://www.stata-journal.com/software/sj5-1
SJ5-1 st0081. Visualizing main effects and interactions...

These ado files can be deleted by ado uninstall command.

. ado uninstall st0081

package st0081 from http://www.stata-journal .com/software/sj5-1
SJ5-1 st0081. Visualizing main effects and interactions...

(package uninstalled)

87

Chapter 18. Advanced Programming

Besides simple one-line commands, we can always get more from Stata by more sophisticated
programming.

Looping

Consider the sample program below, which reads in income data for twelve months.
input famid incl-incl2

1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818

2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471

3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215
end

Say that we wanted to compute the amount of tax (10%) paid for each months, which means to
compute 12 variables by multiplying each of the inc* variable by 0.10.

There is more than one way to execute part of your do file more than once.

1. The simplest way is to use 12 generate commands.

generate taxincl = incl * .10
generate taxinc2 = inc2 * .10
generate taxinc3 = inc3 * .10
generate taxinc4 = inc4 * .10
generate taxinc5 = incb * .10
generate taxinc6 = inc6 * .10
generate taxinc7 = inc7 * .10
generate taxinc8 = iInc8 * .10
generate taxinc9 = inc9 * .10

generate taxinclO= incl0 * .10
generate taxincll= incll * _10
generate taxincl2= incl2 * .10

2. Another way to computer 12 variables is to use the foreach command.

In the example below, we use the foreach command to cycle through the variables inc1 to inc12
and compute the taxable income as taxincl-taxincl12.

foreach var of varlist incl-incl2 {
generate tax var®" = “var®" * .10
}

The initial foreach statement tells Stata that we want to cycle through the variables inc1 to inc12
using the statements that are surrounded by the curly braces. Note the curly braces must be open
at the end of foreach command line. The first time we cycle through the statements, the value of
var will be incl and the second time the value of var will be inc2 and so on until the final
iteration where the value of var will be inc12. Each statement within the loop (in this case, just

88

the one generate statement) is evaluated and executed. When we are inside the foreach loop, we
can access the value of var by surrounding it with the funny quotation marks like this "var’ . The
" is the quote right below the ~ on your keyboard and the * is the quote below the * on your
keyboard. The first time through the loop, "var® is replaced with incl, so the statement

generate tax var® = “var®™ * .10
becomes

generate taxincl = incl * .10

This is repeated for inc2 and then inc3 and so on until inc12. So, this foreach loop is the
equivalent of executing the 12 generate commands manually, but much easier and less error
prone.

3. The third way is to use while loop.

First we define a Stata local variable that is going to be the loop increment. Similar to the
foreach command, codes are in terms of local variable “var'.

local i=1

while “i"<=12 {

generate taxinc i"=inc i"*0.10
local iI="i1"+1

}

Local variable i can be seen as a counter, and the while command states how many times the
commands within the while loop are going to be replicated. This statement basically says do
until counter value reaches the limit 12. Note the curly braces must be open at the end of while
command line. All commands between curly braces will be executed each time the system go
through the while loop. So first the statement

generate taxinc i"=inc i"*0.10

becomes

generate taxincl=incl*0.10

The counter value is increased by 1 unit afterwards. Note that the fourth line means the value of
local variable i will be increased by 1 from its current value stored in ~i-.

Create variable containing percentiles

If we are interested in divide a dataset by its percentile, say, quartile, there are at least two ways
to realize it.

89

1. use gen and egen command to create a running counter, then using generate and replace
command to create percentile code.

Here is an example from my colleague.

gen pop=hhsize*weight

gen popsum=sum{pop)

egen totpop=sum(pop)

gen cut=0

replace cut=1 if popsum<(totpop/5)

replace cut=2 if popsum<(2*totpop/5) & popsum>=(totpop/5)
replace cut=3 if popsum<(3*totpop/5) & popsum>=(2*totpop/5)
replace cut=4 if popsum<(4*totpop/5) & popsum>=(3*totpop/5)
replace cut=5 if popsum<=(totpop) & popsum>=(4*totpop/5)

2. use pctile and xtile command

The pctile command creates a new variable containing the percentiles of another variable. The
xtile command creates a new variable that categorizes exp by its quantiles. Let’s try those two
commands and check the output. The pctile command produces three cutting points at 25", 50™
(meidan), and 75" percentile. The xtile command assign a new variable to recode which quartile
the observation belongs to.

- pctile pctli=tot_exp [pweight=samplewt], nq(4)

. tab pctl
percentiles |
of tot_exp | Freq. Percent Cum.
____________ e
7.678307 | 1 33.33 33.33
11.19419 | 1 33.33 66.67
16.24392 | 1 33.33 100.00
____________ e
Total | 3 100.00
. xtile pct2=tot_exp [pweight=samplewt], nq(4)
. tab pct2
4 quantiles |
of tot _exp | Freq. Percent Cum
____________ e e e
1] 3,414 19.74 19.74
2] 3,575 20.67 40.41
31 4,131 23.89 64.30
4] 6,175 35.70 100.00
____________ e e
Total | 17,295 100.00

90

Chapter 19. Helpful Sources

http://www.stata.com/

http://www.stata.com/statalist/archiv

Statalist is hosted at the Harvard School of Public Health, and is an email listserver where Stata
users including experts writing Stata programs to users like us maintain a lively dialogue about

all things statistical and Stata. You

can sign on to statalist so that you can receive as well as post your own questions through email.

http://ideas.repec.org/s/boc/bocode.html
http://www.princeton.edu/~erp/stata/main.html
http://www.cpc.unc.edu/services/computer/presentations/statatutorial/
http://www.ats.ucla.edu/stat/stata/

91

	cover page 1.pdf
	cover 2.pdf
	NOTE.pdf
	STATA TRAINING NOTES-temp.pdf
	annex.pdf
	STATA NOTES_BINGXIN YU.pdf

