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Abstract

We present two mechanisms for segregating mixtures of Brownian particles. In the first

model, we used a W-potential, which is piece-wise linear, with non-homogeneous tempera-

ture background to separate mixtures of two types of Brownian particles that differ in their

diffusion constants. We found closed form expression for the dynamics of the separation as

a function of the parameters characterizing the model. For a given set of model parameter,

we explored how the separation evolves with time and found it to take a maximum value at a

finite time. We are specifically interested in how the barrier height affects the process of seg-

regation and found that the best separation between the particles occurs at infinite potentials

which corresponds to waiting for infinite times. As such we optimized the segregation and

found the barrier height that gives us the optimized separation. In the second model, we used

a periodic sawtooth potential, created by a uniform gravitational field, to separate mixtures of

two types of Brownian particles. With the application of a small load and a non-homogeneous

temperature background, we have shown that it is possible to separate two types of Brownian

particles that have different masses by making them move in opposite directions.
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Chapter 1

INTRODUCTION

Noise is unavoidable for any system in thermal contact with its surrounding. In technological

devices, it is typical to incorporate mechanisms for reducing noise to an absolute minimum.

An alternative approach is emerging these decades, however, in which attempts are made to

harness noise for useful purposes.

Fluctuation-driven transport uses noise to accomplish mass transport without macro-

scopic forces or gradients. An important insight is that, in some cases, thermal noise can

assist directed motion by providing a mechanism for overcoming energy barriers. In those

cases, one speaks of ”Brownian Motors” [1].

However, recent work has focused on the possibility of an energy source other than

thermal gradient to power a microscopic motor. If energy is supplied by external fluctuations

or a non-equilibrium chemical reaction, Brownian motion can be biased provided the medium

is anisotropic, even in an isothermal system [2].

Brownian motors or ”ratchets” consist of Brownian particles moving in asymmetric poten-

tials and subject to non-equilibrium backgrounds, like external fluctuations or temperature

gradients [3]. In general, the essential ingredients for the directed motion of a Brownian
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particle can be listed as follows:

i)Thermal noise to cause Brownian motion. More generally, random forces (of thermal,

non-thermal, or even deterministic origin) should play a prominent role.

ii)Symmetry breaking (asymmetry) arising from the structure of the medium in which

the particle diffuses.

iii)Spatial periodicity.

iv)All acting forces have to vanish after averaging over space, time, and statistical en-

semble.

v)Breaking detailed balance symmetry.

Using ratchets for separating mixtures of Brownian particles that differ in diffusion con-

stant, mass, diameter, etc. has attracted many researchers in the field. Among the earliest

works is by A. Ajdari, et al [4] where Brownian particles are subjected to a spatially asym-

metric periodic potential that is switched on and off as a function of time. When the potential

is switched on, the Brownian particles are driven to the minimum of the spatially periodic

potential, whereas the Brownian particles can diffuse freely when the spatial potential is

switched off. This gives rise to a net directional motion in one-dimension, and the rectifying

mechanism of the Brownian ratchet can be used to separate Brownian particles that have

different diffusion constants.This method of separating Brownian Particles has also been

done experimentally and the result of the experiment agree with theoretical calculations [5].

There is an analysis which shows that making the potential on and off can also be used to

separate Brownian particles even in the presence of a small load. The smaller particles feel

only a small force due to gravity while there is enough Brownian motion which can be biased

by the ratchet to cause motion uphill. The larger particles, on the other hand, experience

less Brownian motion and feel a greater force due to gravity and so move downhill [2].
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It is also reported that a 3-state fluctuating potential, V+(x), V0(x) and V−(x), can also be

used for separating mixtures with different damping constants [6]. By choosing the flipping

rate between these potentials appropriately, one can separate small particles in opposite

directions, as the Brownian motion can be biased in different directions.

An experimental realization has also been reported where a geometrical ratchet can be

used as a molecular sieve to separate mixtures of membrane-associated molecules that differ

in electrophoretic mobility and diffusion constant [7].

In this thesis, we present two mechanisms for segregating mixtures of non-interacting

Brownian particles. The first mechanism makes use of a bistable potential while the second

mechanism uses a periodic sawtooth (ratchet) potential.

In the first model, in stead of taking the periodically repeating potential, we simply

take a bistable potential. We then put the two types of particles, having different diffusion

constants, mixed up, in the left well. We create a non-homogeneous temperature background.

The temperature varies spatially along the potential. We then let the particles flow by the

thermal kick they get from the background, count the number of particles that are coming

to the right well and stop the flow when the difference between the number of particles of the

two types is maximum. We have calculated the time to get the best separation between the

particles. We have also calculated numerically the barrier height that gives us the optimum,

rather than the best, separation between the particles.

In the second model, we use the periodically repeating sawtooth potential to segregate

mixtures of Brownian particles that differ in their mass. We apply a small external load

and create a non-homogeneous temperature background on the ratchet potential, created by

a uniform gravitational field. Since the two Brownian particles have different masses, the

potential they experience is also different. Due to this, the two particles will have different
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currents. Under appropriate choice of the masses, and hence the potentials, we show that

we can have a situation in which one particle moves in the positive direction while the

other particle moves in the negative direction. So using this mechanism, one can succeed in

separating the mixtures in opposite directions.

The rest of our work is organized as follows. In chapter 2, we look at the dynamics of

a particle in a double well potential. We derive expressions for the mean first passage time

and the escape rate for a particle in a double well potential. The expression for the time

evolution of the number of particles in a double well potential is also given. In chapter 3,

we give both the analytical and numerical results for the first model. We apply the results

obtained in chapter 2 to our specific model and solve for the mean first passage time and

the escape rates for both types of particles. Using the expression for the time evolution

of the number of particles, we calculate the number of particles at any time for each type

of particle in each well. We also find expressions for the maximum separation between the

particles and the time required to get the maximum separation. Finally, we calculate the

barrier height that gives us the optimum separation between the particles. For comparison,

we discuss the homogeneous temperature case. In chapter 4, we present our second model.

We derive the expression for the steady state current of a particle moving on a tilted ratchet

potential with non-homogeneous temperature background. Next we apply this to the second

model and look how we can segregate the mixtures. The last chapter is devoted to summary

and concluding remarks.
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Chapter 2

DYNAMICS OF A BROWNIAN

PARTICLE IN A BISTABLE

POTENTIAL

Our goal is to separate mixtures of ideal Brownian particles. Our model can be explained as

follows. We have a double well potential, with non-homogeneous temperature background, in

which two types of non-interacting Brownian particles, say A and B, with different diffusion

constants are originally found in mixtures in the left well while the right well is empty. As

a result of the temperature gradient, a flow of particles will be induced from the left to the

right well. Since the two particles have different diffusion constants, their rate of escape to

the right well will be different. This gives rise to a different number of particles of type A and

B in the right well as the process proceeds. We want to know the time when the difference

in the number of particles of the two types is maximum. This is the time we need to stop

the process to get the best segregation of the mixtures.

To do this, first we have to look at the dynamics of a Brownian particle in a double well
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potential. We calculate the mean first passage time (MFPT) for a particle to move from one

well to the other, and hence the escape rates. This is done in the next sections. We also

study how the number of particles vary with time in each well.

2.1 Particle in a Double Well Potential

Consider a double well potential like the one shown in Fig 2.1. Consider a Brownian particle

moving in such a potential. The Langevin equation governing the motion of such a particle

is given by

m
d2x

dt2
= − γ

dx

dt
− V ′(x) +

√
2kBT (x)γ ξ(t), (2.1)

where x describes the position of the particle at time t, m is the mass of the particle, γ

is the damping (friction) coefficient due to the fluid in which the particle is moving, kB

is the Boltzmann constant, T (x) is the position-dependent temperature, V ′(x) is the force

derivable from some potential V (x) and the prime denotes differentiation with respect to x,

ξ(t) is a Gaussian white noise satisfying

< ξ(t) > = 0, (2.2)

and

< ξ(t)ξ(t′) > = Aδ(t− t′), (2.3)

where A is a constant which is equal to
√

2kBT (x)γ for a Gaussian white noise.

For heavy damping (γ very large), the above equation reduces to

dx = − 1

γ
V ′(x)dt +

√
2kBT (x)

γ
dW (t) (2.4)

where dW (t) = ξ(t)dt. The Fokker-Planck equation (FPE) corresponding to this Langevin
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Figure 2.1: Double well potential

equation is

∂tp(x, t) =
1

γ
∂x[V

′(x)p(x, t)] +
kB
γ
∂2
x[T (x)p(x, t)], (2.5)

where p(x, t) is the probability density of finding the particle at position x at time t and γ

is taken to be the same through out the medium.

For a Langevin equation of the form

dx = A(x)dt + B(x)dW (t),

the forward FPE is given by [8]

∂tp(x, t) = − ∂x[A(x) p(x, t)] +
1

2
∂2
x[B(x)2 p(x, t)],

and the backward FPE is given by

∂tp(x, t) = A(x)∂xp(x, t) +
1

2
B(x)2 ∂2

xp(x, t).

We begin by calculating the Mean First Passage Time (MFPT) taken by the particle to

move from one well to the other, and vice versa.
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2.2 Calculation of Mean First Passage Time

We want to know how long a particle whose dynamics is governed by the FPE, Eq.(2.5),

remains in a certain region of x. The solution of this problem can be achieved by using the

backward FPE.

2.2.1 Two Absorbing Barriers

Let a particle be initially at position x at time t=0 in an interval (a,b).

a≤x≤b

We erect absorbing barriers at a and b so that the particle is removed when it reaches a or

b. Then by mean first passage time we mean the average time taken by the particle to reach

point a or b for the first time. Hence if it is still in the interval (a,b), it has never left the

interval. Let G(x,t) be the probability of finding the particle still in the interval (a,b) at

time t. Then,

G(x, t) =

∫ b

a

dx′p(x′, t|x, 0). (2.6)

Note that p(x′, t|x, 0) is the conditional probability that the particle is at x′ at time t given

that it was at x at time t = 0.

Let P(t)dt be the probability that the particle leaves the interval (a,b) between t and

t+dt. This probability is the same as the probability of staying in the interval until time t,

and then leaving the interval between t and t+dt, i.e.,

P(t)dt = G(x, t)

∫ b

a

dx p(z, t+ ∆t|x, t), (2.7)

where z /∈ (a, b). Eq.(2.7) can equally be expressed as

P(t)dt = G(x, t)[1−
∫ b

a

dx′
∫ b

a

dx p(x′, t+ ∆t|x, t)],
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where the term with the double integral is the probability of staying in the interval up to

t+dt, so that

∫ b

a

dx p(z, t+ ∆t|x, t) +

∫ b

a

dx′
∫ b

a

dx p(x′, t+ ∆t|x, t) = 1. (2.8)

Hence,

P(t)dt = G(x, t) − G(x, t+ ∆t) = − ∂tG(x, t)dt. (2.9)

Now, the mean first passage time is given by

< t > =

∫ ∞

0

dt t P(t). (2.10)

Using Eq.(2.9) and integrating Eq.(2.10) by parts, we get

< t > = t(x) =

∫ ∞

0

dt G(x, t). (2.11)

Since the system is time homogeneous, Eq.(2.6) can be written as

G(x, t) =

∫
dx′p(x′, 0|x,−t). (2.12)

Differentiating this once with respect to time, we get

∂tG(x, t) =

∫
dx′∂tp(x

′, 0|x,−t). (2.13)

From the backward FPE, we have

∂tp(x
′, 0|x,−t) = A(x)∂xp(x

′, 0|x,−t) +
1

2
B(x)∂2

xp(x
′, 0|x,−t). (2.14)

Eq.(2.13) then becomes

∂tG(x, t) =

∫
dx′[A(x)∂xp(x

′, 0|x,−t) +
1

2
B(x)∂2

xp(x
′, 0|x,−t)],

so that,

∂tG(x, t) = A(x)∂xG(x, t) +
1

2
B(x)∂2

xG(x, t). (2.15)
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Let us integrate Eq.(2.15) over dt in the interval (0,∞).∫ ∞

0

dt ∂tG(x, t) =

∫ ∞

0

dt [A(x)∂xG(x, t)] +
1

2

∫ ∞

0

dt [B(x)∂2
xG(x, t)],

G(x,∞)−G(x, 0) = A(x)∂x

∫ ∞

0

dt G(x, t) +
1

2
B(x)∂2

x

∫ ∞

0

dt G(x, t). (2.16)

At t = ∞, the particle will leave the interval and hence G(x,∞) = 0. But at t = 0, we

have

G(x, 0) =

∫
dx′p(x′, 0|x, 0) =

∫
dx′δ(x′ − x) = 1.

With this and Eq.(2.11), we can write Eq.(2.16) as

A(x)∂xt(x) +
1

2
B(x)∂2

xt(x) = − 1. (2.17)

Eq.(2.17) is the ordinary differential equation for t(x) with the boundary condition,

t(a) = t(b) = 0, (2.18)

where a and b are the absorbing boundaries. This is because if the particle is originally at

a or b, it is removed from the system. To get the mean first passage time, we have to solve

Eq.(2.17) which can be written as

d2t(x)

dx2
+

2A(x)

B(x)

dt(x)

dx
= − 2

B(x)
. (2.19)

Let us define a function f(x) as

f(x) = ∂xt(x). (2.20)

Then Eq.(2.19) can be written as

df(x)

dx
+

2A(x)

B(x)
f(x) = − 2

B(x)
. (2.21)

This is a non-homogeneous differential equation. Let us first find the solution of the homo-

geneous differential equation

df(x)

dx
+

2A(x)

B(x)
f(x) = 0,
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whose solution is given by

f(x) =
f(a)

ψ(x)
, (2.22)

where

ψ(x) = e
2

∫ x
a dx′ A(x′)

B(x′) . (2.23)

Eq.(2.22) is a solution to the homogeneous differential equation. For the non-homogeneous

differential equation, Eq.(2.21), we assume a general equation of the form,

f(x) =
F (x)

ψ(x)
. (2.24)

Inserting this in to Eq.(2.21), we find after some manipulation,

F (x) = F (a) − 2

∫ x

a

dx′
ψ(x′)

B(x′)
. (2.25)

Eq.(2.24) then becomes,

f(x) =
F (a)

ψ(x)
− 2

ψ(x)

∫ x

a

dx′
ψ(x′)

B(x′)
.

Using Eq.(2.20) we can write this as

dt(x)

dx
=

F (a)

ψ(x)
− 2

ψ(x)

∫ x

a

dx′
ψ(x′)

B(x′)
. (2.26)

Integrating this once more with respect to x, we get

t(x)− t(a) = F (a)

∫ x

a

dy

ψ(y)
− 2

∫ x

a

dy′

ψ(y′)

∫ y′

a

dz
ψ(z)

B(z)
. (2.27)

Applying the boundary condition given by Eq.(2.18), we get

F (a) = 2
[
∫ x

a
dy′

ψ(y′)

∫ y′

a
dz ψ(z)

B(z)
+

∫ b

x
dy′

ψ(y′)

∫ y′

a
dz ψ(z)

B(z)
]∫ b

a
dy
ψ(y)

. (2.28)

Substituting Eq.(2.28) into (2.27),we get the mean first passage time for a particle between

two absorbing barriers to be

t(x) = 2
[
∫ x

a
dy
ψ(y)

∫ b

x
dy′

ψ(y′)

∫ y′

a
dz ψ(z)

B(z)
−

∫ b

x
dy
ψ(y)

∫ x

a
dy′

ψ(y′)

∫ y′

a
dz ψ(z)

B(z)
]∫ b

a
dy
ψ(y)

. (2.29)
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We are interested in the case where one of the boundaries is absorbing while the other is

reflecting. The MFPT in that case is shown in the next section.

2.2.2 One Absorbing Barrier

Here we consider motion of a particle still in the interval (a,b) but when only either a or b

is absorbing.

i) a reflecting and b absorbing

From the backward FPE, the boundary conditions are

∂xt(a) = 0, (2.30)

and

t(b) = 0, (2.31)

where Eq.(2.30) holds for a reflecting boundary, while Eq.(2.31) for an absorbing boundary.

With this boundary conditions, let us consider Eq.(2.25)

F (x) = F (a) − 2

∫ x

a

dx′
ψ(x′)

B(x′)
(2.25)

with

F (a) = f(a)ψ(a) = ∂xt(a)ψ(a) = 0,

and hence

F (x) = − 2

∫ x

a

dx′
ψ(x′)

B(x′)
. (2.32)

Eq.(2.24) then becomes

f(x) = − 2

ψ(x)

∫ x

a

dx′
ψ(x′)

B(x′)
. (2.33)
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Using Eq.(2.20) and integrating, we will have

t(x) − t(a) = − 2

∫ x

a

dy

ψ(y)

∫ y

a

dz
ψ(z)

B(z)
. (2.34)

Applying the boundary conditions in Eq.(2.30) and (2.31), we get

t(a) = 2

∫ b

a

dy

ψ(y)

∫ y

a

dz
ψ(z)

B(z)
. (2.35)

Substituting Eq.(2.35) into (2.34), we find

t(x) = 2

∫ b

x

dy

ψ(y)

∫ y

a

dz
ψ(z)

B(z)
. (2.36)

ii) a absorbing and b reflecting

In this case the boundary conditions become

t(a) = 0, (2.37)

and

∂xt(b) = 0. (2.38)

With Eq.(2.37), Eq.(2.27) can be written as

t(x) = F (a)

∫ x

a

dy

ψ(y)
− 2

∫ x

a

dy′

ψ(y′)

∫ y′

a

dz
ψ(z)

B(z)
. (2.39)

Differentiating this once with respect to x, we get

∂xt(x) =
F (a)

ψ(x)
− 2

ψ(x)

∫ x

a

dz
ψ(z)

B(z)
. (2.40)

Applying the boundary condition in Eq.(2.38), we will get

F (a) = 2

∫ b

a

dz
ψ(z)

B(z)
(2.41)
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With this Eq.(2.39) becomes

t(x) = 2

∫ x

a

dy

ψ(y)

∫ b

y

dz
ψ(z)

B(z)
(2.42)

As described earlier, the main aim of this thesis is to segregate mixtures of Brownian

particles. This is achieved by counting the number of particles of each type that reaches the

right well. To do that we have to know the escape rates of each type of particle from one

well to the other. The escape rates can easily be found from the MFPTs. It was proved that

for an arbitrary time-homogeneous stochastic process, Kramer’s flux-over-barrier (escape)

rate is identical to the inverse of the associated mean first passage time [9]. Hence, getting

the MFPT is equivalent to getting the escape rates. Once we get the escape rates we can

proceed to see how the particles evolve in time from one well to the other.

2.3 Evolution in time of the number of particles

Consider a double well potential. Suppose initially there are N particles in the left well and

no particles in the right well. The equations governing the number of particles in the left

and right wells at any time t are

dnL(t)

dt
= − λ1nL(t) + λ2nR(t) (2.43)

dnR(t)

dt
= λ1nL(t) − λ2nR(t), (2.44)

where λ1 is the escape rate from the left well to the right well, λ2 is the escape rate from

the right well to the left well and nL(R)(t) is the number of particles in the left (right) well

at any time. To get the number of particles in the left and right wells at any time, we have

to solve the coupled differential equations, Eqs.(2.43) and (2.44). To do that we assume a

15



solution of the form

nL(t) = Aeωt and nR(t) = Beωt, (2.45)

with initial conditions, nL(0) = N and nR(0) = 0. Substituting Eq.(2.45) into Eqs.(2.43)

and (2.44), and solving the resulting equations, we get ω = 0 or ω = − (λ1 + λ2) so that

nL(t) = A1 + A2e
−λt (2.46)

nR(t) = B1 + B2e
−λt, (2.47)

where λ = λ1 + λ2. Since

dnL(t)

dt
= − dnR(t)

dt
, (2.48)

and using the initial conditions, we finally arrive at the population in each well to be given

by

nL(t) =
N

λ
(λ2 + λ1e

−λt), (2.49)

and

nR(t) =
Nλ1

λ
(1 − e−λt). (2.50)

In this chapter, we have calculated the MFPT for a particle in a double well potential.

From the MFPT, one can write for the escape rate [9] as

λ1(2) =
1

t1(2)

, (2.51)

where λ1(2) is the escape rate from the left (right) to the right (left) well and t1(2) is the

corresponding MFPT. In this chapter, in addition to the MFPTs, We have shown how the

number of particles evolve in time.

In the next chapter, we apply these results to our model. To be able to solve our problem

analytically, we have taken a double well potential which is piecewise linear (W-potential)
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with a piecewise constant non-homogeneous temperature background. In addition to the

expressions for the MFPTs, we will study the dependence of the process of segregation on

the parameters characterizing our model.

17



Chapter 3

SEGREGATION OF BROWNIAN

PARTICLES USING A BISTABLE

POTENTIAL

Suppose we have an asymmetric W-potential like the one shown in Fig.(3.1) below. We

have two types of non-interacting Brownian particles, say A and B, with different diffusion

constants DA and DB mixed up in the left well. We create a non-homogeneous temperature

background as shown. The particles are free to diffuse across the wells and we want to know

the time to get an optimum separation of the mixtures.
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Figure 3.1: An asymmetric W-potential

The potential profile for this asymmetric potential is

V (x) =



− V0

L2
x, if x < 0;

V
L1
x, if 0 ≤ x ≤ L1,

− V
L2

(x− L) , if L1 ≤ x ≤ L,

V0

L1
(x− L) , if x ≥ L1,

Figure 3.1 is the double well potential considered in the last chapter except for the

piecewise linear nature of the potential. So using Eq.(2.36) and (2.42), we can calculate the

MFPT taken by a particle to move from x = 0 to x = L and from x = L to x = 0.

3.1 MFPT from x = 0 to x = L

In this case, we have a reflecting boundary to the left of x = 0 at −∞ and the particle

is considered to be absorbed when it reaches x = L. So we use Eq.(2.36) with the
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substitution that x = 0, b = L and take the limit a→ −∞. And with A(x) = − V ′(x)
γ

and B(x) = 2kBT (x)
γ

, Eq.(2.36) can be written as

t(0 → L) =
γ

kB

∫ L

0

dx

ψ(x)

∫ x

a

dx′
ψ(x′)

T (x′)
, (3.1)

where

ψ(x) = Exp [− 1

kB

∫ x

a

dx′
V ′(x′)

T (x′)
]. (3.2)

We can write Eq.(3.1) as

t(0 → L) =
γ

kB
[F1 + F2], (3.3)

where

F1 =

∫ L1

0

dx

ψ(x)

∫ x

a

dx′
ψ(x′)

T (x′)
, (3.4)

and

F2 =

∫ L

L1

dx

ψ(x)

∫ x

a

dx′
ψ(x′)

T (x′)
. (3.5)

Integrating Eqs.(3.4) and (3.5), and taking the limit as a→ −∞, we get

F1 =
kBL2

V0

kBT1L1

V
(e

V
kBT1 − 1) +

kBL1

V

kBT1L1

V
(e

V
kBT1 − 1) − kBL

2
1

V
, (3.6)

and

F2 = − kBL2

V0

kBT2L2

V
e

V
kBT1 (e

−V
kBT2 − 1) − kBL1

V

kBT2L2

V
(e

V
kBT1 − 1)(e

−V
kBT2 − 1)

+
kBL2

V

kBT2L2

V
(e

−V
kBT2 − 1) +

kBL
2
2

V
. (3.7)

Using Eqs.(3.6) and (3.7) in Eq.(3.3), we find the MFPT from x = 0 to x = L to be

t(0 → L) =
γ

V
[kBT1L1(

L2

V0

+
L1

V
)(e

V
kBT1 − 1) − kBT2L

2
2(
e

V
kBT1

V0

− 1

V
)(e

−V
kBT2 − 1)

− kBT2L1L2

V
(e

V
kBT1 − 1)(e

−V
kBT2 − 1) − (L2

1 − L2
2)]. (3.8)
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3.2 MFPT from x = L to x = 0

Here we have a reflecting boundary to the right of x = L at x = ∞ and the particle is

considered to be absorbed when it reaches x = 0. So we use Eq.(2.42) with the substitution

that a = 0, x = L and take the limit b → ∞. And with A(x) = − V ′(x)
γ

and

B(x) = 2kBT (x)
γ

, Eq.(2.42) can be written as

t(L→ 0) =
γ

kB

∫ L

0

dx

ψ(x)

∫ b

x

dx′
ψ(x′)

T (x′)
,

which can be written as

t(L→ 0) =
γ

kB

∫ 0

L

dx

ψ(x)

∫ x

b

dx′
ψ(x′)

T (x′)
, (3.9)

where ψ(x) is given by Eq.(3.2). We can write Eq.(3.9) as

t(L→ 0) =
γ

kB
[G1 + G2], (3.10)

where

G1 =

∫ L1

L

dx

ψ(x)

∫ x

b

dx′
ψ(x′)

T (x′)
, (3.11)

and

G2 =

∫ 0

L1

dx

ψ(x)

∫ x

b

dx′
ψ(x′)

T (x′)
. (3.12)

Integrating Eqs.(3.11) and (3.12), and taking the limit as b→∞, we get

G1 =
kBL1

V0

kBT2L2

V
(e

V
kBT2 − 1) +

kBL2

V

kBT2L2

V
(e

V
kBT2 − 1) − kBL

2
2

V
, (3.13)

and

G2 = − kBL1

V0

kBT1L1

V
e

V
kBT2 (e

− V
kBT1 − 1) − kBL2

V

kBT1L1

V
(e

− V
kBT1 − 1)(e

V
kBT2 − 1)

+
kBL1

V

kBT1L1

V
(e

− V
kBT1 − 1) +

kBL
2
1

V
. (3.14)
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Using Eq.(3.13) and (3.14) into Eq.(3.10), we get the MFPT from x = L to x = 0 to be

t(L→ 0) =
γ

V
[kBT2L2(

L1

V0

+
L2

V
)(e

V
kBT2 − 1) − kBT1L

2
1(
e

V
kBT2

V0

− 1

V
)(e

− V
kBT1 − 1)

− kBT1L1L2

V
(e

− V
kBT1 − 1)(e

V
kBT2 − 1) + (L2

1 − L2
2)]. (3.15)

Consider the situation of Fig.(3.1). Let the hot region be at a temperature T1 and the

cold region be at a temperature T2 such that

T1 = (1 + α)T2

where α is some non-negative number, and let u = V
kBT2

, u0 = V0

kBT2
, and β = L2

L1
. With

this, the MFPTs given by Eqs.(3.8) and (3.15) can be written as

t(0 → L) =
γ

u

L2
1

kBT2

[(1 + α)(
β

u0

+
1

u
)(e

u
1 + α − 1) − β2(

e
u

1 + α

u0

− 1

u
)(e− u − 1)

− β

u
(e

u
1 + α − 1)(e− u − 1) − (1 − β2)], (3.16)

and

t(L→ 0) =
γ

u

L2
1

kBT2

[β(
1

u0

+
β

u
)(eu − 1) − (1 + α)(

eu

u0

− 1

u
)(e−

u
1 + α − 1)

− β

u
(1 + α)(e−

u
1 + α − 1)(eu − 1) + (1 − β2)]. (3.17)

We have two types of particles mixed up in the left well. The two particles have diffusion

constants DA and DB such that

DA(B)(x) =
kBT (x)

γA(B)

.

Since T (x) varies in the same interval for both particles, the difference in the diffusion

constants is as a result of the damping coefficients on the particles.

Using Eqs.(2.51), (2.52), (3.16) and (3.17), we will find the escape rates for particles of

type A and type B to be

λ1A =
u

γAg
, (3.18)
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λ2A =
u

γAh
, (3.19)

λ1B =
u

γBg
, (3.20)

λ2B =
u

γBh
, (3.21)

where

g =
L2

1

kBT2

[(1 + α)(
β

u0

+
1

u
)(e

u
1 + α − 1) − β2(

e
u

1 + α

u0

− 1

u
)(e− u − 1)

− β

u
(e

u
1 + α − 1)(e− u − 1) − (1 − β2)], (3.22)

and

h =
L2

1

kBT2

[β(
1

u0

+
β

u
)(eu − 1) − (1 + α)(

eu

u0

− 1

u
)(e−

u
1 + α − 1)

− β

u
(1 + α)(e−

u
1 + α − 1)(eu − 1) + (1 − β2)]. (3.23)

Using Eqs.(2.49) and (2.50), the number of particles of type A and B in the left and right

wells at any time is given by

nLA(t) =
NA

λA
(λ2A + λ1Ae

−λA t), (3.24)

nRA(t) =
NAλ1A

λA
(1 − e−λA t), (3.25)

nLB(t) =
NB

λB
(λ2B + λ1Be

−λB t), (3.26)

nRB(t) =
NBλ1B

λB
(1 − e−λB t), (3.27)

where λA = λ1A + λ2A and λB = λ1B + λ2B.

3.3 Result and Discussions

The particles are free to flow from one well to the other by the thermal kick they get from

the background with their respective escape rates. Initially, there are NA particles of type

23



A and NB particles of type B mixed up in the left well and the right well is empty. We want

to separate the mixtures and hence we are interested in the number of particles in the right

well. In order to have a good separation, we have to stop the flow when

∆ = nRA − nRB (3.28)

is maximum, assuming DA > DB or γA < γB.

∆(u, t, ri) =
h

(g + h)
[NA(1 − e−λA t) − NB(1 − e−λB t)], (3.29)

where ri stands for the parameters like α, β,and γ and noting that

λ1A

λA
=

λ1B

λB
=

h

(g + h)
,

Eq.(3.29) can also be written as

∆(u, t, ri) =
h

(g + h)
[(NA − NB) + NBe

[− u
γB

h + g
gh

t] − NAe
[− u

γA

h + g
gh

t]
]. (3.30)

We have to stop the flow when ∆, given by Eq.(3.30) is maximum. This occurs for

∂t∆(u, t, ri) = 0. (3.31)

With this we find the time, tm, to get the maximum separation between the particles to be

tm =
γAγB

γB − γA

Log γB

NB
− Log γA

NA

u(h + g
gh

)
. (3.32)

Rearranging Eq.(3.32), we get

(
h + g

gh
)utm =

γAγB
γB − γA

(Log
γB
NB

− Log
γA
NA

). (3.33)

Using Eq.(3.33) into Eq.(3.30), we will get the maximum separation between the particles

to be,

∆m =
h

(g + h)
[(NA − NB) + NB exp[− γA

γB − γA
(Log

γB
NB

− Log
γA
NA

)]

− NA exp[−
γB

γB − γA
(Log

γB
NB

− Log
γA
NA

)]]. (3.34)

Let us now consider the case of high and low barrier limits.
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3.3.1 High Barrier Limit (u >> 1)

Here we take the limit u >> 1 in Eq.(3.34) above. Let us define a function f(γA,B, NA,B)

such that

f(γA,B, NA,B) = (NA − NB) + NB exp[− γA
γB − γA

(Log
γB
NB

− Log
γA
NA

)]

− NA exp[−
γB

γB − γA
(Log

γB
NB

− Log
γA
NA

)]. (3.35)

This function is independent of u. So we can write Eq.(3.34) as

∆m =
h

(g + h)
f(γA,B, NA,B). (3.36)

The dependence of ∆m on u is thus through g and h as can be seen from Eqs.(3.22) and

(3.23). So for u very large we will have eu >> 1 and e−u << 1 and hence we ignore 1

compared to eu and e−u compared to 1. With this Eqs.(3.22) and (3.23) can be written as

g =
L2

1

kBT2

[(1 + α)(
β

u0

+
1

u
) +

β2

u0

+
β

u
]e

u
(1 + α) , (3.37)

and

h =
L2

1

kBT2

[(1 + α)(
1

u0

+
β

u
) +

β

u0

+
β2

u
]eu. (3.38)

With this Eq.(3.36) becomes

∆m =
1

(1 +
1

u0
(β2 + (1 + α)β) + 1

u
(1 + α + β)

1
u0

(1 + α + β) + 1
u
(β2 + (1 + α)β)

) e−
αu

1 + α

f(γA,B, NA,B). (3.39)

For u0 and u very large, Eq.(3.39) can be approximated as

∆m = f(γA,B, NA,B). (3.40)

3.3.2 Low Barrier Limit(u << 1)

Here we take the limit u << 1 in Eq.(3.36). Clearly f(γA,B, NA,B) is independent of u.

For u very small, we can expand the exponential terms. Let us expand g and h, given by
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Eqs.(3.22) and (3.23), in powers of u and take terms of order u only. With this we will have,

g =
uL2

1

kBT2

[
β(β + 1)

u0

+
(1 + β2(1 + α) + β)

1 + α
], (3.41)

and

h =
uL2

1

kBT2

[
(1 + β)

u0

+
(1 + β2(1 + α) + β(1 + α))

1 + α
]. (3.42)

Eq.(3.36) can then be written as

∆m =

(1 + β)
u0

+ (1 + β2(1 + α) + β(1 + α))
1 + α

(β + 1)2

u0
+ (2 + 2β2(1 + α) + β(2 + α))

(1 + α)

f(γA,B, NA,B), (3.43)

which for u0 large reduces to

∆m =
(1 + β2(1 + α) + β(1 + α))

(2 + 2β2(1 + α) + β(2 + α))
f(γA,B, NA,B) (3.44).

This means that ∆m will roughly be equal to 1
2
f(γA,B, NA,B).

3.4 Numerical Results

As we have shown earlier, we have calculated analytically ∆(u, t, ri), the difference in the

number of particles of the two types. As our interest is to separate the mixtures, we have to

stop the flow when ∆ is maximum. We have also calculated analytically the time tm(u, ri)

to get the maximum separation and also the value of the maximum separation ∆m(u, ri).

We are specifically interested in how the barrier height u affects both ∆ and t.

We now study the effect numerically. We have plotted below ∆ as a function of t for

various values of the barrier height u. We begin with NA = NB initially, i.e., initially we

have equal number of particles of type A and B mixed up in the left box.

The plot of ∆ versus t is shown in Fig.(3.2) - (3.4) for β = 3, α = 1, u0 = 10,

NA = NB = 100, and γB = 2γA. In these figures D stands for ∆. We have plotted ∆
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Figure 3.2: Plot of ∆ versus t for u = 1

Figure 3.3: Plot of ∆ versus t for u = 8
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Figure 3.4: Plot of ∆ versus t for u = 15

versus t from u = 1, u = 8 and u = 15. All the plots show us that ∆ has a maximum at

some value of t as expected. As we increase u, both the maximum value of ∆ and the time

at which this maximum occurs increase.

To look at how ∆m and tm vary as we vary u, we have plotted them as a function of

u as shown in Fig.(3.5) and (3.6). In these figures Dm stands for ∆m. As we increase the

barrier height u, ∆m goes increasing which, however, saturates for large values of u while tm

increases exponentially. So increasing the barrier height to very large values has very little

or negligible advantage in separating the mixtures.
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As we have shown above, keeping the potential very small gives a small value of ∆m

although the process takes place in short time. Keeping the potential very large gives us

the best separation, but that is at the expense of waiting for a very long time. We want

a reasonably good separation while, at the same time, not wait for an infinitely long time.

How can we get an optimum separation in a finite time?

Let us define a function Ω such that

Ω =
∆m

tm
. (3.45)

This function is the ratio of the maximum separation between the particles to the time to get

the maximum separation. It is a function which describes the rate of maximum segregation

between the particles. We have plotted Ω as a function of u as shown in Fig.(3.7), where W

stands for Ω. The graph has a maximum at a finite value of u. We take the value of u at

which Ω is a maximum to be the appropriate value of the barrier height to get the optimized

separation.

From the plot of Ω versus u, we found that Ω is maximum for u = 2.56727. With this

value for the barrier height u and using Eqs.(3.32) and (3.34), we get the time to get the

maximum separation to be

tm = 6.1810, (3.46)

and the maximum separation between the particles to be

∆m = 20.184875, (3.47)

for NA = NB = 100.

Let us compare the values of tm and ∆m with their value at the barrier height which

gives us the best separation, i.e., u very large. As u→∞, tm →∞ too, and

∆m → 25.
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Figure 3.5: Plot of tm versus u

Figure 3.6: Plot of ∆m versus u
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Figure 3.7: Plot of Ω versus u

Using u = 2.56727, we are able to get a ∆m which is almost 80 percent of what we will

get if we use u very large. In addition, our optimal barrier height gives us this separation in

a very short time as compared to the time taken to get the best separation.

With a look at the plot of Ω versus t, we have seen that we get an optimized separation at

t = 6.1810. So we have to stop the flow at this time and go to the next step.The next step

is to shift the W-potential one step further or collect the particles in the two wells separately,

put the particles that were in the right well to the left well and repeat the segregation process

again. We should again find the time to get the maximum separation and the maximum

separation between the particles.

To do this we have to first find the number of particles of each type in the right well at

tm. Using the value of tm given in Eq.(3.46) and substituting it into Eqs.(3.25) and (3.27),

we get,

nRA(tm1) = 60.554625

nRB(tm1) = 40.36975
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Figure 3.8: Plot of tm versus u

Figure 3.9: Plot of ∆m versus u
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Figure 3.10: Plot of Ω versus u

These are the number of particles of type A and B in the left box for the next process.

With this values for NA and NB, we have again plotted Ω versus u and the maximum occurs

at the same value of u as in the first case.

The values of tm and ∆m are,

tm = 9.80

∆m = 21.72957

So for the second phase we have to stop the flow at the time we obtained above. The

plots for tm, ∆m and Ωm as a function of u are shown in Fig.(3.8)-(3.10). With this value of

tm and Eqs.(3.25) and (3.27), the number of particles of type A and B in the right well will

be

nRA(tm2) = 43.45913,
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and

nRB(tm2) = 21.72957.

These are the number of particles of the two types in the left well for the third phase of the

process. By doing this repeatedly one can finally succeed in segregating the mixtures to a

degree one is interested in. However, one can’t get a pure separation unless one does the

process infinite times.

3.5 The Homogeneous Temperature Case

To see the effect of having non-homogeneous temperature background, we have done the

first phase of the separation process for the case of homogeneous temperature. We simply

put α = 0 in the expressions for tm, ∆m and Ω and plot them as a function of u.

As can be seen from Fig.(3.11)-(3.13), the time to get the maximum separation increases

exponentially rapidly. So one has to wait for very long time to get the the maximum

separation. Unlike the the non-homogeneous case, ∆m has a maximum at some value of u

and then decreases. This means that increasing the barrier height above some critical value

will not help in getting the best separation. However, the plot of Ω versus u still exhibits a

maximum.
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Figure 3.11: Plot of tm versus u

Figure 3.12: Plot of ∆m versus u
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Figure 3.13: Plot of Ω versus u
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Chapter 4

SEGREGATION OF BROWNIAN

PARTICLES USING RATCHET

POTENTIAL

In this chapter, we present another mechanism for segregating mixtures of Brownian particles

that have different masses. We consider a ratchet potential that is tilted, by applying a small

load, and exposed to a non-homogeneous temperature background. The ratchet potential

is created by a uniform gravitational field. Due to the difference in their masses, the two

particles look at different barrier height of the ratchet potential and hence the particles drift

along the potential with different currents. We will make use of this fact to segregate the

mixtures in such a way that one particle moves up the hill, while the other moves down the

hill.

We first derive the current for a Brownian particle moving in such a potential and then

show that such a particle can have both positive and negative currents depending on the

barrier height of the ratchet potential it is experiencing. One can then choose the masses in
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such a way that the barrier height that the lighter particles experience produce a negative

current while that the heavier particles experience produce a positive current.

4.1 Derivation of the current

Consider a Brownian particle that is moving in an asymmetric sawtooth potential, the so-

called ratchet, with a small load and a piecewise constant non-homogeneous temperature

background as shown in Fig.(4.1).

Figure 4.1: The model ratchet potential

The potential profile for the ratchet is given by

V0(x) =


V0

L1
x, if 0 ≤ x ≤ L1;

V0

L2
(x− L) , if L1 ≤ x ≤ L,

and this potential repeats itself periodically such that V0(x + L) = V0(x). The potential

due to the load varies linearly with position, i.e.,VL(x) = fx. The temperature profile is
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T (x) =


Thot = T1, if 0 ≤ x < L1;

Tcold = T2, if L1 ≤ x < L,

and repeats itself periodically, T (x + L) = T (x), like the potential. The Langevin equation

governing the motion of a particle in such a profile is given by

m
d2x

dt2
= − γ

dx

dt
− V ′

0(x) − V ′
L(x) +

√
2kBT (x)γ ξ(t), (4.1)

where all the variables are as in chapter 2 with V0(x) corresponding to the ratchet potential

and VL(x) is the potential due to the load. We can write this equation as

m
d2x

dx2
= − γ

dx

dt
− F (x) +

√
2kBT (x)γ ξ(t), (4.2)

where F (x) = V ′
0(x) + V ′

L(x) and can be written as

F (x) =


fL1 + V0

L1
, if 0 ≤ x ≤ L1;

fL2 − V0

L2
, if L1 ≤ x ≤ L.

For heavy damping, Eq.(4.2) reduces to

dx = − 1

γ
F (x)dt +

√
2kBT (x)

γ
dW (t), (4.3)

where dW (t) = ξ(t)dt.

The Fokker-Planck equation (FPE) corresponding to this Langevin equation is

∂tp(x, t) =
1

γ
∂x[F (x)p(x, t)] +

kB
γ
∂2
x[T (x)p(x, t)], (4.4)

where p(x, t) is the probability density of finding the particle at position x at time t and γ

is taken to be the same through out the medium. Eq(4.4) can be written as

∂tp(x, t) + ∂xJ(x, t) = 0, (4.5)
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where

J(x, t) = − 1

γ
[F (x)p(x, t)] − kB

γ
∂x[T (x)p(x, t)], (4.6)

is the probability current density.

We are interested in the steady state current which is given by

−1

γ
[F (x)pss(x)] −

kB
γ
∂x[T (x)pss(x)] = const. = J. (4.7)

where pss(x) is the steady state probability distribution. Eq.(4.7) can be written as

d[T (x)pss(x)]

dx
+

F (x)

kBT (x)
[T (x)pss(x)] = − γJ

kB
. (4.8)

Multiplying this by the integrating factor

ψ(x) = Exp[
1

kB

∫ x

0

dx′
F (x′)

T (x′)
], (4.9)

and rearranging, we get

pss(x)T (x)ψ(x) − pss(0)T (0)ψ(0) = − γJ

kB

∫ x

0

dx′ψ(x′). (4.10)

The steady state probability distribution is periodic, i.e.,

pss(x + L) = pss(x), (4.11)

and satisfies the normalization condition∫ L

0

dx pss(x) = 1. (4.12)

Let us first apply Eq.(4.11) on Eq.(4.10),

pss(L) = pss(0) = p0.

With this, Eq.(4.10) becomes

p0T1 = − γJ

kB

∫ L

0
dx ψ(x)

[ψ(L) − 1]
. (4.13)
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Rearranging Eq(4.10), one finds

pss(x) =
p0T1

T (x)ψ(x)
− γJ

kB

1

T (x)ψ(x)

∫ x

0

dx′ψ(x′). (4.14)

Now using the normalization condition, Eq.(4.12), this becomes

p0T1

∫ L

0

dx

T (x)ψ(x)
− γJ

kB

∫ L

0

dx

T (x)ψ(x)

∫ x

0

dx′ψ(x′) = 1 (4.15)

Using Eq.(4.13) into Eq.(4.15) and rearranging terms, we find

J = − kB
γ

E

GH + IE
, (4.16)

where

E = ψ(L) − 1, (4.17)

G =

∫ L

0

dx ψ(x), (4.18)

H =

∫ L

0

dx

T (x)ψ(x)
, (4.19)

and

I =

∫ L

0

dx

T (x)ψ(x)

∫ x

0

dx′ψ(x′). (4.20)

Integrating Eqs.(4.17) - (4.20), one will get

E = e
[
fL1 + V0

kBT1
+

fL2 − V0
kBT2

] − 1, (4.21)

G =
kBT1L1

fL1 + V0

(e
fL1 + V0

kBT1 − 1) +
kBT2L2

fL2 − V0

e
fL1 + V0

kBT1 (e
fL2 − V0

kBT2 − 1), (4.22)

H = − kBL1

fL1 + V0

(e
− fL1 + V0

kBT1 − 1) − kBL2

fL2 − V0

e
− fL1 + V0

kBT1 (e
− fL2 − V0

kBT2 − 1). (4.23)

We can write Eq.(4.20) as the sum of two terms

I = I1 + I2, (4.24)
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where

I1 =

∫ L1

0

dx

T (x)ψ(x)

∫ x

0

dx′ψ(x′),

I2 =

∫ L

L1

dx

T (x)ψ(x)

∫ x

0

dx′ψ(x′),

which upon integration give

I1 =
kBL

2
1

fL1 + V0

+ T1(
kBL1

fL1 + V0

)2(e
− fL1 + V0

kBT1 − 1), (4.25a)

I2 =
kBL

2
2

fL2 − V0

+ T2(
kBL2

fL2 − V0

)2(e
− fL2 − V0

kBT2 − 1)

+
kBT1L1

fL1 + V0

kBL2

fL2 − V0

(e
− fL1 + V0

kBT1 − 1)(e
− fL2 − V0

kBT2 − 1). (4.25b)

Let the hot and cold temperatures be such that

T1 = (1 + α)T2,

and let us scale our parameters as follows: β = L2

L1
, u = V0

kBT2
, ` = fL1

kBT2
, J0 =

γL2
1

kBT2
J .

With this scaled variables the scaled current J0 can be written as

J0 = − E ′

G′H ′ + E ′(I ′1 + I ′2)
, (4.26)

where

E ′ = e[
` + u
1 + α

+ (β` − u)] − 1, (4.27)

G′ =
1 + α

` + u
(e

` + u
1 + α − 1) +

β

β` − u
e

` + u
1 + α (eβ` − u − 1), (4.28)

H ′ = − 1

` + u
(e−

` + u
1 + α − 1) − β

β` − u
e−

` + u
1 + α (e−(β` − u) − 1), (4.29)

I ′1 =
1

` + u
+

1 + α

` + u2 (e−
` + u
1 + α − 1), (4.30)

and

I ′2 =
β2

β` − u
+ (

β

β` − u
)2 (e−(β` − u) − 1)
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+
β(1 + α)

(` + u)(β` − u)
(e−

` + u
1 + α − 1) (e−(β` − u) − 1). (4.31)

We have plotted the current as function of the load ` and the barrier height u in Fig.(4.2)

for β = 1
2

and α = 1.

Figure 4.2: The 3D Plot of J as a function of ` and u

As one can see from the plot the current has both positive and negative values. That

means under appropriate choice of the load and the barrier height, one can bias the motion

of a Brownian particle either to the right or to the left. We are interested in the dependence

of the current on the barrier height for a fixed choice of the load. The plot of J0 versus u

for ` = 1, β = 1
2

and α = 1 is shown in Fig.(4.3). The plot shows that J0 = 0 for

a specific value of u. So depending on the value of u, one can generate both positive and

negative currents.

In the next section, we will apply the expressions obtained above to our model and see

how we can segregate mixtures of Brownian particles.
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Figure 4.3: Plot of J versus u for ` = 1

4.2 Mechanism for segregation

Consider the ratchet potential of Fig.(4.1) but this time with out the load. It is like we have

a one-dimensional table, whose surface has a sawtooth nature. Imagine a Brownian particle

trying to move on this surface. In order to move, the particle must get enough energy to

overcome the barrier created by the gravitational field.

Consider two types of Brownian particles having different masses trying to move in such

a microscopic table. In the presence of gravitational field, the heavier particles experience a

larger barrier height than the lighter particle, as shown in Fig.(4.4).
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Figure 4.4: The potential for two particles with different masses

In our model we have two types of particles having different masses mixed up in one

of the wells of a periodic sawtooth potential under a constant load. Since we consider the

system in a gravitational field, the two types of particles experience different barrier heights.

The lighter particles experience a barrier height, say u1, which is less than the barrier height,

say u2, which the heavier particles experience. If we keep the other parameters fixed for both

types of particles, then the expression for the steady state current in Eq.(4.26) holds true for

both types of particles with the replacement of u by u1 and u2. It was shown in Fig.(4.3) that

the current can be biased to the left or to the right by an appropriate choice of the barrier

height. Let us choose u1 and u2 in such a way that the current for the lighter particles is in

the negative direction while that for the heavier particles is in the positive direction. Then

we can succeed in separating the mixtures such that the heavier particles move up the hill

and be collected at the top, while the lighter particles move down the hill and be collected

at the bottom.
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Chapter 5

Summary and Conclusion

We considered two mechanisms for segregating mixtures of non-interacting Brownian parti-

cles. The first model uses a bistable potential with a non-homogeneous temperature back-

ground. The mixture contains two types of Brownian particles that have different diffusion

constants. The particles are placed, mixed up, in the left well and allowed to diffuse to

the right well by the thermal kick they get from the background. Since the particles have

different diffusion constants, they arrive at the right well with different escape rates.

By making use of the difference in their escape rates, we have shown how one can have

an optimum separation between the particles. We found closed form expressions for the

MFPTs, escape rates, and the difference in the number of particles of the two types in the

right well. We have also given analytic expressions for the maximum separation between the

particles and the time to get this maximum separation. Since the time required to get the

best separation needs infinite time, we have optimized our parameter with which one can

succeed in getting 80 percent of the best separation in a finite time.

One can see our model this way. Consider a tiny tube in the shape of a ring. At one

position positive charges are accumulated on the ring. At some other position negative

46



Figure 5.1: A circular ring as a double well potential

charges are accumulated and there is an impenetrable boundary near the negative charges.

One portion of the ring is in contact with a hot heat reservoir at temperature T1 while the

other portion of the ring is in contact with a cold reservoir at temperature T2 as shown in

the figure below.

Imagine now that we put two types of particles with the same positive charge but different

diffusion constants inside the tube at the location of the accumulated negative charges. We

assume that the particles are ideal so that the force of interaction between them is negligible.

A positively charged particle at this position gets it difficult to overcome the barrier which

it experiences as a result of the accumulation of the positive charges on the ring. But if the

thermal kick it gets from the background is sufficient, then the particle can definitely cross

the barrier. Since the mixed particles carry the same amount of positive charge but differ

in their diffusion constant, then these particles cross the barrier at different rates and can

be accumulated on the other side of the impenetrable wall. Note that the asymmetry can

also be created by varying the relative position of the accumulated charges. Then we can
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separate the mixtures using the method described in chapter 3.

In the second model, we made use of a periodic sawtooth potential that is tilted by

applying a small load exposed to a non-homogeneous temperature background. With this

model we have shown that we can separate two Brownian particles that have different masses

in opposite direction by making use of a uniform gravitational field, which creates the ratchet

potential.

In conclusion, we believe that experiments like the ones done by Fauchex and Libch-

aber [5] can be done to check the mechanisms we present in this thesis. Furthermore the

mechanisms presented can have applications in various mining, food, and pharmaceutical

industries.
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